Peer-Reviewed Articles:
266. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation
Liang, Y.; Li, F.; Miao, R. K.; Hu, S.; Ni, W.; Zhang, S.; Liu, Y.; Bai, Y.; Wan, H.; Ou, P.; Li, X.-Y.; Wang, N.; Park, S.; Li, F.*; Zeng, J.*; Sinton, D.* and Sargent, E. H.*
Nature Synth. 2024, 3, 1104.
265. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway
Kong, X.; Ni, J.; Song, Z.; Yang, Z.; Zheng, J.; Xu, Z.; Qin, L.; Li, H.; Geng, Z.* and Zeng, J.*
Nature Sustain. 2024, 7, 652.
264. Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis
Ma, X.; Yin, H.; Pu, Z.; Zhang, X.; Hu, S.; Zhou, T.; Gao, W.; Luo, L.*; Li, H.* and Zeng, J.*
Nature Commun. 2024, 15, 8470.
263. Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling
Yang, Y.; Zhang, C.; Zhang, C.; Shi, Y.; Li, J.; Johannessen, B.; Liang, Y.; Zhang, S.; Song, Q.; Zhang, H.; Huang, J.; Ke, J.; Zhang, L.; Song, Q.; Zeng, J.; Zhang, Y.; Geng, Z.; Wang, P.-S.*; Wang, Z.*; Zeng, J.* and Li, F.*
Nature Commun. 2024, 15, 6316.
262. Facet sensitivity of iron carbides in Fischer-Tropsch synthesis
Wu, W.; Luo, J.; Zhao, J.; Wang, M.; Luo, L.; Hu, S.; He, B.; Ma, C.; Li, H.* and Zeng, J.*
Nature Commun. 2024, 15, 6108. (Editors' Highlights)
261. Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis
Chi, M.; Ke, J.; Liu, Y.; Wei, M.; Li, H.; Zhao, J.; Zhou, Y.; Gu, Z.; Geng, Z.* and Zeng, J.*
Nature Commun. 2024, 15, 3646.
260. Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4
Liu, Y.; Wei, J.; Yang, Z.; Zheng, L.; Zhao, J.; Song, Z.; Zhou, Y.; Cheng, J.; Meng, J.; Geng, Z.* and Zeng, J.*
Nature Commun. 2024, 15, 3619.
259. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution
Zhang, Z.; Jia, C.; Ma, P.; Feng, C.; Yang, J.; Huang, J.; Zheng, J.; Zuo, M.; Liu, M.; Zhou, S.* and Zeng, J.*
Nature Commun. 2024, 15, 1767. (Editors' Highlights)
258. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction
Wei, J.; Tang, H.; Sheng, Li.; Wang, R.; Fan, M.; Wan, J.; Wu, Y.; Zhang, Z.*; Zhou, S. and Zeng, J.*
Nature Commun. 2024, 15, 559.
257. Experimental demonstration of topological catalysis for CO2 electroreduction
Kong, X.; Liu, Z.; Geng, Z.; Zhang, A.; Guo, Z.; Cui, S.; Xia, C.; Tan, S.; Zhou, S.; Wang, Z.* and Zeng, J.*
J. Am. Chem. Soc. 2024, 146, 10, 6536.
256. A scenario for a carbon-neutral ammonia-fueled engine mediated by catalytic NH3 cracking and CO2 hydrogenation
Ren, J.; Li, H.*; Lou, H.; Zhou, W.; Zeng, F.; Wang, Y.; Liu, X.; Mevrahtu, C.; Pei, G.; Cao, J.-P.; Yao, T.*; Wang, Z* and Zeng, J.*
Angew. Chem. Int. Ed. DOI: 10.1002/anie.202420292.
255. Progressive fabrication of a Pt-based high-entropy-alloy catalyst toward highly efficient propane dehydrogenation
Luo, J.; Li, X.; Ye, Y.; Zhou, T.; Wu, W.; Li, H.; Yang, Q.; Yan, H.* and Zeng, J.*
Angew. Chem. Int. Ed. DOI: 10.1002/anie.202419093.
254. Highly selective synthesis of acetic acid from hydroxyl-mediated oxidation of methane at low temperatures
Wu, B.; Yin, H.; Ma, X.; Liu, R.; He, B.; Li, H.* and Zeng, J.*
Angew. Chem. Int. Ed. DOI: 10.1002/anie.202412995.
253. Oriented synthesis of glycine from CO2, N2, and H2O via a cascade process
Kong, X.; Liu, C.; Xu, Z.; Zhao, J.; Ni, J.; Li, H.; Zheng, T.; Xia, C.*; Geng, Z.* and Zeng, J.*
Angew. Chem. Int. Ed. DOI: 10.1002/anie.202411160.
252. Facet-dependent diversity of Pt–O coordination for Pt1/CeO2 catalysts achieved by oriented atomic deposition
Yan, H.; Lei, H.; Qin, X.; Liu, J.-C.*; Cai, L.; Hu, S.; Xiao, Z.; Peng, F.; Wang, W.-W.; Jin, Z.; Yi, X.; Zheng, A.; Ma, C.; Jia, C.-J.* and Zeng, J.*
Angew. Chem. Int. Ed. DOI: 10.1002/anie.202411264.
251. Optimizing the intermediates adsorption by manipulating the second coordination shell of Ir single atoms for efficient water oxidation
Wei, J.; Tang, H.; Liu, Y.*; Liu, G.; Sheng, L.; Fan, M.; Ma, Y.; Zhang, Z. and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202410520.
250. A general strategy based on hetero-charge coupling effect for constructing single-atom sites
Peng, C.; Wang, M.; Li, S.; Zeng, X.; Wang, J.; Wang, W.; Zhang, Z.; Ye, M.; Wei, X.; Wu, K.*; Zhang, K.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202408771.
249. Recycling valuable alkylbenzenes from polystyrene through methanol-assisted depolymerization
Zeng, L.; Yan, T.; Du, J.; Liu, C.; Dong, B.; Qian, B.; Xiao, Z.; Su, G.; Zhou, T.; Peng, Z.; Wang, Z.; Li, H.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202404952.
248. The importance of sintering-induced grain boundaries in copper catalysis to improve carbon-carbon coupling
Wu, W.; Luo, L.; Li, Z.; Luo, J.; Zhao, J.; Wang, M.; Ma, X.; Hu, S.; Chen, Y.; Chen, W.; Wang, Z.; Ma, C.; Li, H.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202404983.
247. Close intimacy between PtIn clusters and zeolite channels for ultrastability toward propane dehydrogenation
Luo, L.; Zhou, T.; Li, W.; Li, X.; Yan, H.; Chen, W.; Xu, Q.; Hu, S.; Ma, C.; Bao, J.; Pao, C.-W.; Wang, Z.; Li, H.; Ma, X.*; Luo, L.* and Zeng, J.*
Nano Lett. 2024, 24, 24, 7236.
246. CO-assisted methane oxidation into oxygenates over surface platinum–titanium alloyed layers
Yin, H.; Wu, B.; Ma, X.; Su, G.; Han, M.; Lin, H.; Liu, X.; Li, H.* and Zeng, J.*
Nano Lett. 2024, 24, 16, 5002.
245. Bipyridine-confined silver single-atom catalysts facilitate in-plane C–O coupling for propylene electrooxidation
Chi, M.; Zhao, J.; Ke, J.; Liu, Y.; Wang, R.; Wang, C.; Hung, S.-F.; Lee, T.-J.; Geng, Z.* and Zeng, J.*
Nano Lett. 2024, 24, 5, 1801.
244. Efficient interfacial sites between metallic and oxidized cobalt for propene hydroformylation
Pu, Z.; Zhao, J.; Yin, H.; Zhao, J.; Ma, X.* and Zeng, J.*
Nano Lett. 2024, 24, 3, 852.
243. Orienting electron fillings in d orbitals of cobalt single atoms for effective zinc–air battery at a subzero temperature
Yan, Y.; Wen, B.; Liu, M.*; Lei, H.; Yang, J.; He, S.; Qu, Z.; Xia, W.; Li, H.* and Zeng, J.*
Adv. Funct. Mater. 2024, 34, 30, 2316100.
242. Recycle of organic ligands and solvents for successive synthesis of Cu-based nanocrystals towards CO2 hydrogenation
Xin, Y.; Xie, Z.; Liu, R.; Li, Q.; Wang, Z.; Cao, D.; Li, S.; Zhang, L.; Hu, S.; Li, H.; He, R.; Wang, L.* and Zeng, J.*
J. Mater. Chem. A 2024, 12, 28786.
241. Shifting ceria’s function from inhibitor to promotor by oxygen vacancies
Lin, H.; Yin, H.; Wu, B.; Li, H. and Zeng, J.*
Sci. Bull. 2024, 69, 19, 2978.
240. Thiol ligand-modified Au for highly efficient electroreduction of nitrate to ammonia
Wu, Y.; Kong, X.; Su, Y.; Zhao, J.; Ma, Y.; Ji, T.; Wu, D.; Meng, J.; Liu, Y.*; Geng, Z.* and Zeng, J.*
Precis. Chem. 2024, 2, 3, 112.
239. Synergistic effect of heterogeneous single atoms and clusters for improved catalytic performance
Liu, L.; Gao, W.; Ma, Y.; Mei, K.; Wu, W.; Li, H.; Zhang, Z.* and Zeng, J.*
JUSTC 2024, 54, 0605.
238. Metabolic engineering of yeast for the production of carbohydrate-derived foods and chemicals from C1–3 molecules
Tang, H.; Wu, L.; Guo, S.; Cao, W.; Ma, W.; Wang, X.; Shen, J.; Wang, M.; Zhang, Q.; Huang, M.; Luo, X.; Zeng, J.; Keasling, J. D.* and Yu, T.*
Nature Catal. 2024, 7, 21.
237. Synthesis of metal–nitrogen–carbon electrocatalysts with atomically regulated nitrogen-doped polycyclic aromatic hydrocarbons
Chen, S.; Yan, H.-M.; Tseng, J.; Ge, S.; Li, X.; Xie, L.; Xu, Z.; Liu, P.; Liu, C.; Zeng, J.; Wang, Y.-G.* and Wang, H.-L.*
J. Am. Chem. Soc. 2024, 146, 20, 13703.
236. Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis
Zhao, S.; Liu, M.; Qu, Z.; Yan, Y.*; Zhang, Z.; Yang, J.; He, S.; Xu, Z.; Zhu, Y.; Luo, L.*; Hui, K. N.; Liu, M.* and Zeng, J.
Angew. Chem. Int. Ed. 2024, 63, e202408914.
235. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons
Du, J.; Zeng, L.; Yan, T.; Wang, C.; Wang, M.; Luo, L.; Wu, W.; Peng, Z.; Li, H. and Zeng, J.*
Nature Nanotechnol. 2023, 18, 772.
234. Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion
Dai, Y.; Li, H.; Wang, C.; Xue, W.; Zhang, M.; Zhao, D.; Xue, J.; Li, J.; Luo, L.; Liu, C.; Li, X.; Cui, P.; Jiang, Q.; Zheng, T.; Gu, S.; Zhang, Y.; Xiao, J.*; Xia, C.* and Zeng, J.*
Nature Commun. 2023, 14, 3382.
233. Direct synthesis of extra-heavy olefins from carbon monoxide and water
Wang, C.; Du, J.; Zeng, L.; Li, Z.; Dai, Y.; Li, X.; Peng, Z.; Wu, W.; Li, H.* and Zeng, J.*
Nature Commun. 2023, 14, 2857.
232. Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots
Xue, W.; Liu, X.; Liu, C.; Zhang, X.; Li, J.; Yang, Z.; Cui, P.; Peng, H.; Jiang, Q.; Li, H.; Xu, P.; Zheng, T.*; Xia, C.* and Zeng, J.*
Nature Commun. 2023, 14, 2137. (Editors' Highlights)
231. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling
Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D.; Zhang, L.; Geng, Z.*; Li, F.* and Zeng, J.*
Nature Commun. 2023, 14, 474.
230. Selective CO2 electrolysis to CO using isolated antimony alloyed copper
Li, J.; Zeng, H.; Dong, X.; Ding, Y.; Hu, S.; Zhang, R.; Dai, Y.; Cui, P.; Xiao, Z.; Zhao, D.; Zhou, L.; Zheng, T.; Xiao, J.*; Zeng, J.* and Xia, C.*
Nature Commun. 2023, 14, 340.
229. Dynamic metal–ligand coordination boosts CO2 electroreduction
Kong, X.; Zhao, J.; Xu, Z.; Wang, Z.; Wu, Y.; Shi, Y.; Li, H.; Ma, C.; Zeng, J. and Geng, Z.*
J. Am. Chem. Soc. 2023, 145, 27, 14903.
228. Dynamically reversible interconversion of molecular catalysts for efficient electrooxidation of propylene into propylene glycol
Ke, J.; Chi, M.; Zhao, J.; Liu, Y.; Wang, R.; Fan, K.; Zhou, Y.; Xi, Z.; Kong, X.; Li, H.; Zeng, J. and Geng, Z.*
J. Am. Chem. Soc. 2023, 145, 16, 9104.
227. Exploring the strain effect in single particle electrochemistry using Pd nanocrystals
Zhao, J.; Wang, M.; Peng, Y.; Ni, J.; Hu, S.; Zeng, J.* and Chen, Q.*
Angew. Chem. Int. Ed. 2023, e202304424.
226. Regulating spin states in oxygen electrocatalysis
Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.* and Zeng, J.*
Angew. Chem. Int. Ed. 2023, e202216837.
225. One-step approach for constructing high-density single-atom catalysts toward overall water splitting at industrial current densities
Cao, D.; Zhang, Z.; Cui, Y.; Zhang, R.; Zhang, L.; Zeng, J.* and Cheng, D.*
Angew. Chem. Int. Ed. 2023, e202214259.
224. Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy
Liu, F.; Hu, Y.; Qu, Z.; Ma, X.; Li, Z.; Zhu, R.; Yan, Y.*; Wen, B.; Ma, Q.; Liu, M.; Zhao, S.; Fan Z.; Zeng, J.; Liu, M.*; Jin, Z.* and Lin, Z.*
Proc. Natl. Acad. Sci. 2023, 120, 26, e2303262120.
223. Oxygen vacancy-rich TiO2 as an efficient non-noble metal catalyst toward mild oxidation of methane using hydrogen peroxide as the oxidant
Yin, H.; Pu, Z.; Xue, J.; Ma, P.; Wu, B.; Han, M.; Lin, H.; Luo, Z.; Zeng, J.; Ma, X.* and Li, H.*
ACS Catal. 2023, 13, 11, 7608.
222. Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate
Wang, Y.; Zhao, J.; Cao, C.; Ding, J.; Wang, R.; Zeng, J.*; Bao, J.* and Liu, B.*
ACS Catal. 2023, 13, 6, 3532.
221. Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution
Ding, X.; Jia, C.; Ma, P.; Chen, H.; Xue, J.; Wang, D.; Wang, R.; Cao, H.; Zuo, M.; Zhou, S.; Zhang, Z.*, Zeng, J.* and Bao, J.*
Nano Lett. 2023, 23, 8, 3309.
220. Acidic conditions for efficient carbon dioxide electroreduction in flow and MEA cells
Yu, J; Xiao, J.; Ma, Y.; Zhou, J.; Lu, P.; Wang, K.; Yan, Y.; Zeng, J.; Wang, Y.*; Song, S.* and Fan, Z.*
Chem Catal. 2023, 3, 3, 100670.
219. Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system
Bi, H.; Wang, K.; Xu, C.; Wang, M.; Chen, B.; Fang, Y.; Tan, X.*; Zeng, J. and Tan, T.*
Chem. Catal. 2023, 3, 3, 100557.
218. A promoted PtFe/SiO2 catalyst with low Pt concentration for propane dehydrogenation
Luo, L.; Zeng, Z.; Zhou, T.; Luo, J.; Chen, X.; Li, X.*; Yan, H.* and Zeng, J.
Catal. Sci. Technol. 2023, 13, 3395.
217. In‐situ adaptive evolution of rhodium oxide clusters into single atoms via mobile rhodium‐adsorbate intermediates
Pu, Z.; Yin, H.; Ma, X.; Zhao, J. and Zeng, J.*
Chinese J. Catal. 2023, 48, 247.
216. Confinement synergy at the heterointerface for enhanced oxygen evolution
Wang, D.; Ruan, S.; Ma, P.; Wang, R.; Ding, X.; Zuo, M.; Zhang, L.; Zhang, Z.*; Zeng, J.* and Bao, J.*
Nano Res. 2023, 16, 8793.
215. Rational engineering of 2D materials as advanced catalyst cathodes for high‐performance metal–carbon dioxide batteries
Liu, F.; Zhou, J.; Wang, Y.; Xiong, Y.; Hao, F.; Ma, Y.; Lu, P.; Wang, J.; Yin, J.; Wang, G.; Yu, J.; Yan, Y.; Zhu, Z.; Zeng, J. and Fan, Z.*
Small Struct. 2023, 2300025.
214. Efficient electroreduction of nitrate to ammonia with CuPd nanoalloy catalysts
Song, Z.; Qin, L.; Liu, Y.; Zhong, Y.; Guo, Q.*; Geng, Z.* and Zeng, J.*
ChemSusChem 2023, 16, e202300202.
213. 电化学与合成生物学耦合 实现复杂天然产物制备
曾杰. 《前沿科学》, 2023, 17, 15.
212. Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution
Ma, P.; Feng, C.; Chen, H.; Xue, J.; Ma, X.; Cao, H.; Wang, D.; Zuo, M.; Wang, R.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J. and Bao, J.
J. Energy. Chem. 2023, 80, 284.
211. Photo- and electrocatalytic CO2 reduction based on stable lead-free perovskite Cs2PdBr6
Wu D.; Wang, C.; Huo, B.; Hu, K.; Mao, X.; Geng, Z.*; Huang, Q.*; Zhang, W.*; Zeng, J. and Tang, X.*
Energy Environ. Matter. 2023, 6, e12411.
210. Mitigating carbonate formation in CO2 electrolysis
Yang, Y.; Shi, Y.; Yu, H.; Zeng, J.; Li, K.* and Li, F.*
Next Energy 2023, 1, 3, 100030.
209. Functional CeOx nanoglues for robust atomically dispersed catalysts
Li, X.; Pereira-Hernández, X. I.; Chen, Y.; Xu, J.; Zhao, J.; Pao, C.-W.; Fang, C.-Y.; Zeng, J.*; Wang, Y.*; Gates, B. C.* and Liu, J.*
Nature 2022, 611, 284.
208. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering
Zheng, T.; Zhang, M.; Wu, L.; Guo, S.; Liu, X.; Zhao, J.; Xue, W.; Li, J.; Liu, C.; Li, X.; Jiang, Q.; Bao, J.; Zeng, J.*; Yu, T.* and Xia, C.*
Nature Catal. 2022, 5, 388.
207. Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution
Cao, D.; Xu, H.; Li, H.; Feng, C.; Zeng, J.* and Cheng, D.*
Nature Commun. 2022, 13, 5843.
206. Ambient-pressure hydrogenation of CO2 into long-chain olefins
Li, Z.; Wu, W.; Wang, M.; Wang, Y.; Ma, X.; Luo, L.; Chen, Y.; Fan, K.; Pan, Y.; Li, H.* and Zeng, J.*
Nature Commun. 2022, 13, 2396.
205. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution
Zhang, Z.; Feng, C.; Wang, D.; Zhou, S.*; Wang, R.; Hu, S.; Li, H.; Zuo, M.; Kong, Y.*; Bao, J.* and Zeng, J.*
Nature Commun. 2022, 13, 2473.
204. Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals
Ke, J.; Zhao, J,; Chi, M.; Wang, M.; Kong, X.; Chang, Q.; Zhou, W.; Long, C.; Zeng, J. and Geng, Z.*
Nature Commun. 2022, 13, 932.
203. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution
Feng, C.; Zhang, Z.; Wang, D.; Kong, Y.; Wei, J.; Wang, R.; Ma, P.; Li, H.; Geng, Z.; Zuo, M.; Bao, J.; Zhou, S.* and Zeng, J.*
J. Am. Chem. Soc. 2022, 144, 21, 9271.
202. Efficient electroreduction of nitrate into ammonia at ultra-low concentrations via enrichment effect
Song, Z.; Liu, Y.; Zhong, Y.; Guo, Q.; Zeng, J. and Geng, Z.*
Adv. Mater. 2022, 34, 202204306.
201. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4
Liu, P.; Huang, Z.; Gao, X.; Hong, X.; Zhu, J.; Wang, G; Wu, Y.; Zeng, J. and Zheng, X*.
Adv. Mater. 2022, 34, 2200057.
200. CO2 hydrogenation over Copper/ZnO single-atom catalysts: water-promoted transient synthesis of methanol
Wu, W.; Wang, Y.; Luo, L.; Wang, M.; Li, Z.; Chen, Y.; Wang, Z.; Chai, J.; Cen, Z.; Shi, Y.; Zhao, J.; Zeng, J. and Li, H.*
Angew. Chem. Int. Ed. 2022, 61(48), e202213024.
199. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling
Liu, C.; Zhang, M.; Li, J.; Xue, W.; Zheng, T.*; Xia, C.* and Zeng, J.*
Angew. Chem. Int. Ed. 2022, 61(3), e202113498.
198. Photocatalytic conversion of methane: recent advancements and prospects
Li, Q.; Ouyang, Y.; Li, H.; Wang, L.* and Zeng, J.*
Angew. Chem. Int. Ed. 2022, 61(2), e202108069.
197. Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio
Kong, X.; Wang, C.; Xu, Z.; Zhong, Y.; Liu, Y.; Qin, L.; Zeng, J. and Geng, Z.*
Nano Lett. 2022, 22, 19, 8000.
196. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction
Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J. and Geng, Z.*
Nano Lett. 2022, 22, 9, 3801.
195. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling towards CO2 Eletroreduction
Zhong, Y.; Kong, X.; Song, Z.; Liu, Y.; Peng, L.; Zhang, L.; Luo, X.; Zeng, J. and Geng, Z.*
Nano Lett. 2022, 22, 6, 2554.
194. Heterogeneous catalysts toward CO2 hydrogenation for sustainable carbon cycle
Wang, M.; Luo, L.; Wang, C.; Du, J.; Li, H.* and Zeng, J.*
Acc. Mater. Res. 2022, 3, 6, 565.
193. Neighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution
Wang, D.; Xue, J; Ding, X.; Wei, J.; Feng, C.; Wang, R.; Ma, P.; Wang, S.; Cao, H.; Wang, J.; Zuo, M.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.*
ACS Catal. 2022, 12, 19, 12458.
192. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation
Zhang, Y.; Wang, Q.; Yang, S.; Wang, H.; Rao, D.; Chen, T.; Wang, G.; Lu, J.; Zhu, J.; Wei, S.; Zheng, X.* and Zeng, J.
Adv. Funct. Mater. 2022, 32, 2112452.
191. Stretching C-H bond in methane by solid frustrated Lewis pairs
Zhao, J.; Yan, H. and Zeng, J.*
Chem. Catal. 2022, 2, 7, 1521.
190. Modulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution
Ma, P.; Feng, C.; Kong, Y.; Wang, D.; Zuo, M.; Wang, S.; Wang, R.; Kuang, L.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.*
Chem Catal. 2022, 2, 2764.
189. Promoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups
Song, Z.; Liu, Y.; Zhao, J.; Zhong, Y.; Qin, L.; Guo, Q.; Geng, Z.* and Zeng, J.
Chem. Eng. J. 2022, 434, 134636.
188. A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction
Iqbal, R.; Ali, S.; Yasin, G.; Ibraheem, S.; Tabish, M.; Hamza, M.; Chen, H.; Xu, H.; Zeng, J. and Zhao, W.*
Chem. Eng. J. 2022, 430, 132642.
187. Promoting electrocatalytic CO2 methanation using a molecular modifier on Cu surfaces
Wang, C.; Kong, X.; Huang, J.; Yang, Y.; Zheng, H.; Wang, H.; Dai, S.; Zhang, S.; Liang, Y.; Geng, Z.*; Li, F.* and Zeng, J.*
J. Mater. Chem. A 2022, 10, 25725.
186. Single atoms supported on metal oxides for energy catalysis
Li, R.; Luo, L.; Ma, X.; Wu, W.; Wang, M. and Zeng, J.*
J. Mater. Chem. A 2022, 10, 5717.
185. Highly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support
Zhao, T.; Zhao, J.; Tao, X.; Yu, H.; Li, M.; Zeng, J. and Wang, H.*
Commun. Chem. 2022, 5, 70.
184. Atomically dispersed platinum in surface and subsurface sites on MgO have contrasting catalytic properties for CO oxidation
Chen, Y.; Rana, R.; Huang, Z.; Vila, F. D.; Sours, T.;Perez-Aguilar, J. E.; Zhao, X.; Hong, J.; Hoffman, A. S.; Li, X.; Shang, C.; Blum, T.; Zeng, J.; Chi, M.; Salmeron, M.; Kronawitter, C. X.; Bare, S. R.*; Kulkarni, A. R.* and Gates, B. C.*
J. Phys. Chem. Lett. 2022, 13, 17, 3896.
183. Progresses on carbon dioxide electroreduction into methane
Zheng, H.; Yang, Z.; Kong, X.; Geng, Z.* and Zeng, J.*
Chin. J. Catal. 2022, 43, 1634.
182. Low-temperature C–H bond activation: ethylbenzene-to-styrene conversion on rutile TiO2(110)
Lai, Y.; Pu, Z.; Liu, P.; Li, F.; Zeng, J.*; Yang, X. and Guo, Q.*
J. Phys. Chem. C 2022, 126, 14, 6231.
181. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate
Lin, C.; Liu, Y.; Kong, X.; Geng, Z.* and Zeng, J.*
Nano Res. 2022, 15, 10078.
180. Lysine-functionalized SnO2 for efficient CO2 electroreduction into formate
Lin, C.; Xu, Z.; Kong, X.; Zheng, H.; Geng, Z.* and Zeng, J.*
ChemNanoMat 2022, 8, e202200020.
179. Molecular stabilization of sub-nanometer Cu clusters for selective CO2 electromethanation
Zhang, H.; Yang, Y.; Liang, Y.; Li, J.; Zhang, A.; Zheng, H.; Geng, Z.*; Li, F.* and Zeng, J.*
ChemSusChem 2022, 15(1), e202102010.
178. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying
Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.-W.; Xiao, J.*; Xia, C.* and Zeng, J.*
Nature Nanotechnol. 2021, 16, 1386.
177. Water enables mild oxidation of methane to methanol on gold single-atom catalysts
Luo, L.; Luo, J.; Li, H.*; Ren, F.; Zhang, Y.; Liu, A.; Li, W.* and Zeng, J.*
Nature Commun. 2021, 12, 1218.
176. Symmetry-breaking sites for activating linear carbon dioxide molecules
Li, H.; Zhao, J.; Luo, L.; Du, J. and Zeng, J.*
Acc. Chem. Res. 2021, 54, 1454.
175. Doping regulation in transition metal compounds for electrocatalysis
Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.* and Zeng, J.*
Chem. Soc. Rev. 2021, 50, 9817.
174. Pd-Pt tesseracts for oxygen reduction reaction
Chen, S.; Zhao, J.; Su, H.; Li, H.; Wang, H.; Hu, Z.; Bao, J.* and Zeng, J.*
J. Am. Chem. Soc. 2021, 143, 496.
173. Copper-based plasmonic catalysis: recent advances and future perspectives
Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.* and Zeng, J.*
Adv. Mater. 2021, 33, 2008145.
172. Bias-adaptable CO2-to-CO conversion via tuning the binding of competing intermediates
Liang, Y.; Zhao, J.; Zhang, H.; Zhang, A.; Wang, S.; Li, J.; Shakouri, M.; Xiao, Q.; Hu, Y.; Liu, Z.; Geng, Z.*; Li, F.* and Zeng, J.*
Nano Lett. 2021, 21, 20, 8924.
171. Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction
Zhang, A.; Liang, Y.; Li, H.; Wang, S.; Chang, Q.; Peng, K.; Geng, Z.* and Zeng, J.
Nano Lett. 2021, 21, 18, 7789.
170. In-situ generated high-valent iron single-atom catalyst for efficient oxygen evolution
Zhang, Z.; Feng, C.; Li, X.; Liu, C.; Wang, D.; Si, Rui.; Yang, J.; Zhou, S.* and Zeng, J.*
Nano Lett. 2021, 21, 11, 4795.
169. Co-based molecular catalysts for efficient CO2 reduction via regulating spin states
Kong, X.; Ke, J.; Wang, Z.; Liu, Y.; Wang, Y.; Zhou, W.; Yang, Z.; Yan, W.; Geng, Z.* and Zeng, J.*
Appl. Catal. B: Environ. 2021, 290, 120067.
168. A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH
Xing, Y.; Chen, H.; Liu, Y.; Sheng, Y.; Zeng, J.; Geng, Z.* and Bao, J.*
Chem. Commun. 2021, 57, 1502.
167. Inductive effect as a universal concept to design efficient catalysts for CO2 electrochemical reduction: electronegativity difference makes a difference
Chen, H.; Fu, W.; Geng, Z.; Zeng, J.* and Yang, B.*
J. Mater. Chem. A 2021, 9, 4626.
166. Synthesis of tunable syngas on cobalt-based catalysts towards carbon dioxide reduction
Huang, M.; Kong, X.; Wang, C.; Geng, Z.; Zeng, J.* and Bao, J.*
ChemNanoMat 2021, 7, 2.
165. Enhance the activity of multi-carbon products for Cu via P doping
Kong, X.; Wang, C.; Zheng, H.; Geng, Z.*; Bao, J.* and Zeng, J.*
Sci. China Chem. 2021, 7, 1096.
164. A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts
Chen, Y.; Rana, R.; Sours, T; Vila, F. D.; Cao, S.; Blum, T.; Hong, J.; Hoffman, A. S.; Fang, C.-Y.; Huang, Z.; Shang, C.; Wang, C.; Zeng, J.; Chi, M.; Kronawitter, C. X.*; Bare, S. R.*; Gates, B. C.*, and Kulkarni, A. R.*
J. Am. Chem. Soc. 2021, 143, 48, 20144.
163. Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8
Zhang, Y.*; Huang, X.; Wang, L.; Cao, C.; Zhang, H.; Wei, P.; Ding, H.; Song, Y.; Chen, Z.; Qian, J.; Zhong, S.; Liu, Z.; Wang, M.; Zhang, W.; Jiang, W.; Zeng, J.; Yao, G.* and Wen, L.*
Biomaterials 2021, 271, 120720.
162. Probing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy
Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J. and Crumlin, E. J.*
J. Phys. D: Appl. Phys. 2021, 374001.
161. Electrochemical deposition as a universal route for fabricating single-atom catalysts
Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.* and Zeng, J.*
Nature Commun. 2020, 11, 1215.
160. Advanced electrocatalysts with single-metal-atom active sites
Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; Zhao, D.; Xiao, F.; Zhu, X.; Zeng, Y.; Shao, M.*; Chen, S.*; Wu, G.*; Zeng, J.* and Wang, C.*
Chem. Rev. 2020, 120, 12217.
159. Single atom of iron on MoS2 nanosheets for N2 electroreduction into ammonia
Su, H.; Chen, L.; Chen, Y.; Si, R.; Wu, Y.; Wu, X.; Geng, Z.*; Zhang, W.* and Zeng, J.*
Angew. Chem. Int. Ed. 2020, 59, 20411.
158. Surface iron species in a palladium-iron intermetallic promote and stabilize CO2 methanation
Luo, L.; Wang, M.; Cui, Y.; Chen, Z.; Wu, J.; Cao, Y.; Luo, J.; Dai, Y.; Li, W.-X.; Bao, J.* and Zeng, J.*
Angew. Chem. Int. Ed. 2020, 59, 14434.
157. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction
Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.* and Zeng, J.*
Adv. Mater. 2020, 32, 1907690.
156. In-Situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate
Zhang, A.; Liang, Y.; Li, H.; Zhang, B.; Liu, Z.; Chang, Q.; Zhang, H.; Zhu, C.; Geng, Z.*; Zhu, W.* and Zeng, J.*
Nano Lett. 2020, 20, 8229.
155. Dimensionality control of electrocatalytic activity in perovskite nickelates
Cao, C.; Shang, C.; Li, X.; Wang, Y.; Liu, C.; Wang, X.; Zhou, S.* and Zeng, J.*
Nano Lett. 2020, 20, 2837.
154. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis
Li, X.; Li, X.; Liu, C.; Huang, H.*; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.*; Yang, J. and Zeng, J.*
Nano Lett. 2020, 20, 1403.
153. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid
Xing, Y.; Kong, X.; Guo, X.; Liu, Y.; Li, Q.; Zhang, Y.; Sheng, Y.; Yang, X.; Geng, Z.* and Zeng, J.*
Adv. Sci. 2020, 7, 1902989.
152. Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies
Liu, Y.; Kong, X.; Guo, X.; Li, Q.; Ke, J.; Wang, R.; Li, Q.; Geng, Z.* and Zeng, J.*
ACS Catal. 2020, 10, 1077.
151. Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts
Kong, X.; Liu, Y.; Li, P.; Ke, J.; Liu, Z.; Ahmad, F.; Yan, W.; Li, Z.; Geng, Z.* and Zeng, J.*
Appl. Catal. B: Environ. 2020, 268, 118452.
150. Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core-shell nanocubes as an ideal platform
Cui, Y.; Ma, K.; Chen, Z.; Yang, J.; Geng, Z.* and Zeng, J.*
J. Catal. 2020, 381, 427.
149. Tuning the coordination number of Fe single atoms for the efficient reduction of CO2
Chen, H.; Guo, X.; Kong, X.; Xing, Y.; Liu, Y.; Yu, B.; Li, Q.; Geng, Z.*; Si, R.* and Zeng, J.*
Green Chem. 2020, 22, 7529.
148. Boost selectivity of HCOO- using anchored Bi single atoms towards CO2 Reduction
Yang, X.; Cheng, Y.; Qin, L.; Wu, X.; Wu, Y.; Yan, T.; Geng, Z.* and Zeng, J.*
ChemSusChem 2020, 13, 6307.
147. Ultra-sensitive and selective detection of arsenic(III) via electroanalysis over cobalt single-atom catalysts
Li, P.-H.; Yang, M.*; Li, Y.-X.; Song, Z.-Y.; Liu, J.; Lin, C.-H.*; Zeng, J.* and Huang, X.*
Anal. Chem. 2020, 92, 6128.
146. The midas touch on copper into palladium
Zeng, J.*
Sci. China Chem. 2020, 63, 1740.
145. Constructing subtle grain boundaries on Au sheets for enhanced CO2 photoreduction
Li, X.; Zheng, T.; Zhang, L.; Zhao, S.; Chen, Y.; Wei, M.; Shang, C.; Bao, J.* and Zeng, J.*
Sci. China Chem. 2020, 63, 1705.
144. Oscillation of work function during reducible metal oxide catalysis and correlation with the activity property
Pan, Y.; Shen, X.; Holly, M. A.; Yao, L.; Wu, D.; Bentalib, A.; Yang, J.; Zeng, J.* and Peng, Z.*
ChemCatChem 2020, 12, 85.
143. Quantitative insights into non-uniform plasmonic hotspots due to symmetry breaking induced by oblique incidence
Zhou, Y.*; Li, H.; Zhang, G.; Wei, D.; Zhang, L.; Meng, Y.; Zheng, X.; Ma, Z.*; Zeng, J.* and Yang, X.
Phys. Chem. Chem. Phys. 2020, 22, 19932.
142. Molecular modification of single cobalt sites boosts the catalytic activity of CO2 electroreduction into CO
Zhong, Y.; Kong, X.; Geng, Z.; Zeng, J.*; Luo, X.* and Zhang, L.
ChemPhysChem 2020, 21, 2051.
141. Probing the surface chemistry for Reverse Water Gas Shift Reaction on Pt(111) using Ambient Pressure X-ray Photoelectron Spectroscopy
Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J.; Mun, B. S. and Crumlin, E. J.*
J. Catal. 2020, 391, 123.
140. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity
Chen, Y.; Li, H.; Zhao, W.; Zhang, W.; Li, J.; Li, W.; Zheng, X.; Yan, W.; Zhang, W.; Zhu, J.; Si, R.* and Zeng, J.*
Nature Commun. 2019, 10, 1885.
139. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting
Zheng, T.; Shang, C.; He, Z.; Wang, X.; Cao, C.; Li, H.; Si, R.; Pan, B.; Zhou, S.* and Zeng, J.*
Angew. Chem. Int. Ed. 2019, 58, 14764.
138. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation
Shang, C.; Cao, C.; Yu, D.; Yan, Y.; Lin, Y.; Li, H.; Zheng, T.; Yan, X.; Yu, W.; Zhou, S.* and Zeng, J.*
Adv. Mater. 2019, 31, 1805104.
137. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction
Zhang, A.; Liang, Y.; Li, H.; Zhao, X.; Chen, Y.; Zhang, B.; Zhu, W. and Zeng, J.*
Nano Lett. 2019, 19, 6547.
136. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide
Zhang, Z.; Ahmad, F.; Zhao, W.; Yan, W.; Zhang, W.*; Huang, H.*; Ma, C. and Zeng, J.*
Nano Lett. 2019, 19, 4029.
135. Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution
Zhang, Z.; Liu, C.; Feng, C.; Gao, P.; Liu, Y.; Ren, F.; Zhu, Y.; Cao, C.; Yan, W.; Si, R.; Zhou, S.* and Zeng, J.*
Nano Lett. 2019, 19, 8774.
134. Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions
Li, H.; Wang, M.; Luo, L. and Zeng, J.*
Adv. Sci. 2019, 6, 1801471.
133. High-index facets of Pt-Fe nanowires induce steric effect on selective hydrogenation of acetophenone
Wu, W.; Li, J.; Chen, Z.; Chen, W.; Pang, H.; Ma, K. and Zeng, J.*
J. Catal. 2019, 373, 209.
132. Rh doping in Pd nanocubes optimizes the adsorption of 3-nitrostyrene towards selective hydrogenation of vinyl group
Wu, W.; Zhao, S.; Cui, Y. E.; Chen, W.; Liu, Y.; Wang, H.; Li, J.; Li, Z.* and Zeng, J.*
ChemCatChem 2019, 11, 2793.
131. Competitive transient electrostatic adsorption for in situ regeneration of poisoned catalyst
Pan, Y.; Shen, X.; Yao, L.; Bentalib, A.; Yang, J.; Zeng, J.* and Peng, Z.*
ChemCatChem 2019, 11, 1179.
130. Engineering electronic structures of nanomaterials toward carbon dioxide electroreduction
Geng, Z.; Kong, X.; Li, Q.; Ke, J. and Zeng, J.*
Curr. Opin. Electrochem. 2019, 17, 7. (invited review article).
129. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst
Zheng, T.; Jiang, K.; Ta, N.; Hu, Y.; Zeng, J.; Liu, J. and Wang, H.*
Joule 2019, 3, 265.
128. Tuning electronic structure and lattice diffusion barrier of ternary Pt-In-Ni for both improved activity and stability properties in oxygen reduction electrocatalysis
Shen, X.; Dai, S.; Pan, Y.; Yao, L.; Yang, J.; Pan, X.; Zeng, J. and Peng, Z.*
ACS Catal. 2019, 9, 11431.
127. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media
Chen, S.; Zhang, N.; Narváez Villarrubia, C. W.; Huang, X.; Xie, L.; Wang, X.; Kong, X.; Xu, H.; Wu, G.; Zeng, J. and Wang, H.-L.*
Nano Energy 2019, 66, 104164.
126. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.*; Si, R.; Ma, C. and Zeng, J.*
Nature Nanotechnol. 2018, 13, 411.
125. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer
Zhang, Y.; Sha, R.; Zhang, L.; Zhang, W.; Jin, P.; Xu, W.; Ding, J.; Lin, J.; Qian, J.; Yao, G.; Zhang, R.; Luo, F.; Zeng, J.*; Cao, J.* and Wen, L.-P.*
Nature Commun. 2018, 9, 4236.
124. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol
Peng, Y.; Wang, L.; Luo, Q.; Cao, Y.; Dai, Y.; Li, Z.; Li, H.; Zheng, X.; Yan, W.; Yang, J.* and Zeng, J.*
Chem 2018, 4, 613.
123. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst
Li, K.; Li, X.; Huang, H.*; Luo, L.; Li, X.; Yan, X.; Ma, C.; Si, R.; Yang, J. and Zeng, J.*
J. Am. Chem. Soc. 2018, 140, 16159.
122. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction
Zhang, A.; He, R.; Li, H.; Chen, Y.; Kong, T.; Li, K.; Ju, H.; Zhu, J.; Zhu, W. and Zeng, J.*
Angew. Chem. Int. Ed. 2018, 57, 10954.
121. Oxygen Vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO
Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.* and Zeng, J.*
Angew. Chem. Int. Ed. 2018, 57, 6054.
120. Achieving a record-high yield rate of 120.9 µgNH3 mgcat.-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts
Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.* and Zeng, J.*
Adv. Mater. 2018, 30, 1803498.
119. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction
He, R.; Zhang, A.; Ding, Y.; Kong, T.; Xiao, Q.; Li, H.; Liu, Y. and Zeng, J.*
Adv. Mater. 2018, 30, 1705872.
118. Pt single atoms embedded in the surface of Ni nanocrystals as highly active catalysts for selective hydrogenation of nitro compounds
Peng, Y.; Geng, Z.; Zhao, S.; Wang, L.; Li, H.; Wang, X.; Zheng, X.; Zhu, J.; Li, Z.*; Si, R.* and Zeng, J.*
Nano Lett. 2018, 18, 3785.
117. Computation-guided development of platinum alloy catalyst for carbon monoxide preferential oxidation
Pan, Y.; Hwang, S. Y.; Shen, X.; Yang, J.; Zeng, J.*; Wu, M.* and Peng, Z.*
ACS Catal. 2018, 8, 5777.
116. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution
Zhao, X.; Li, X.; Yan, Y.; Xing, Y.; Lu, S.; Zhao, L.; Zhou, S.; Peng, Z.* and Zeng, J.*
Appl. Catal. B: Environ. 2018, 236, 569.
115. Phosphorus-modulated cobalt selenides enable engineered reconstruction of active layers for efficient oxygen evolution
Zhao, X.; Xing, Y.; Zhao, L.; Lu, S.; Ahmad, F. and Zeng, J.*
J. Catal. 2018, 368, 155.
114. Nanoimaging of electronic heterogeneity in Bi2Se3 and Sb2Te3 nanocrystals
Lu, X.; Khatib, O.; Du, X.; Duan, J.; Wei, W.; Liu, X.; Bechtel, H.; D’Apuzzo, F.; Yan, M.; Buyanin, A.; Fu, Q.; Chen, J.; Salmeron, M.; Zeng, J.*; Raschke, M.*; Jiang, P.* and Bao, X.*
Adv. Elect. Mater. 2018, 4, 1700377.
113. Copper-palladium tetrapods with sharp tips as a superior catalyst for oxygen reduction reaction
Zhang, L.; Chen, S.; Dai, Y.; Shen, Z.; Wei, M.; Huang, R.; Li, H.; Zheng, T.; Zhang, Y.; Zhou, S.* and Zeng, J.*
ChemCatChem 2018, 10, 925.
112. Introduction of carbon-boron atomic groups as an efficient strategy to boost formic acid production toward CO2 electrochemical reduction
Cao, Y.; Geng, Z.; Chen, W.; Cai, F.; Wang, G.*; Wang, Z. and Zeng, J.*
Chem. Commun. 2018, 54, 3367.
111. Rh-based nanocatalysts for heterogeneous reactions
Luo, L.; Li, H.; Peng, Y.; Feng, C. and Zeng, J.*
ChemNanoMat 2018, 4, 451.
110. Boosting fuel cell catalysis by surface doping of W on Pd nanocubes
Ahmad, F.; Luo, L.; Li, X.; Huang, H.* and Zeng, J.*
Chin. J. Catal. 2018, 39, 1202.
109. Size-controlled biocompatible silver nanoplates for contrast-enhanced intravital photoacoustic mapping of tumor vasculature.
Wang, X.; Zhang, L.; Wang, J.; Liu, X.; Lv, P.; Zeng, J.* and Liu, G.*
J. Biomed. Nanotechnol. 2018, 14, 1448.
108. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation
Wang, L.; Zhang, W.; Zheng, X.; Chen, Y.; Wu, W.; Qiu, J.; Zhao, X.; Zhao, X.; Dai, Y. and Zeng, J.*
Nature Energy 2017, 2, 869.
107. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires
Huang, H.; Li, K.; Chen, Z.; Luo, L.; Gu, Y.; Zhang, D.; Ma, C.; Si, R.*; Yang, J.; Peng, Z.* and Zeng, J.*
J. Am. Chem. Soc. 2017, 139, 8152.
106. Supported rhodium catalysts for ammonia-borane hydrolysis: dependence of the catalytic activity on the highest occupied state of the single rhodium atoms
Wang, L.; Li, H.; Zhang, W.; Zhao, X.; Qiu, J.; Li, A.; Zheng, X.; Hu, Z.*; Si, R.* and Zeng, J.*
Angew. Chem. Int. Ed. 2017, 56, 4712.
105. Understanding of strain effect in electrochemical reduction of CO2: using Pd nanostructures as an ideal platform
Huang, H.; Jia, H.; Liu, Z.;Gao, P.; Zhao, J.; Luo, Z.; Yang, J.* and Zeng, J.*
Angew. Chem. Int. Ed. 2017, 56, 3594.
104. Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution
Zhao, X.; Zhang, H.; Yan, Y.; Cao, J.; Li, X.; Zhou, S.; Peng, Z.* and Zeng, J.*
Angew. Chem. Int. Ed. 2017, 56, 328.
103. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution
Zheng, T.; Sang, W.; He, Z.; Wei, Q.; Chen, B.; Li, H.; Cao, C.; Huang, R.; Yang, X.; Pan, B.; Zhou, S.* and Zeng, J.*
Nano Lett. 2017, 17, 7968.
102. Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution
He, R.; Hua, J.; Zhang, A.; Wang, C.; Peng, J.; Chen, W. and Zeng, J.*
Nano Lett. 2017, 17, 4311.
101. Integration of quantum confinement and alloy effect to modulate electronic properties of RhW nanocrystals for improved catalytic performance toward CO2 hydrogenation
Zhang, W.; Wang, L.; Liu, H.; Hao, Y.; Li, H.; Khan, M. U. and Zeng, J.*
Nano Lett. 2017, 17, 788.
100. Single-molecule nanocatalysis reveals facet-dependent catalytic kinetics and dynamics of pallidium nanoparticles
Chen, T.; Chen, S.; Song, P.; Zhang, Y.; Su, H.; Xu, W.* and Zeng, J.*
ACS Catal. 2017, 7, 2967-.
99. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 Hydrogenation
Zhang, W.; Wang, L.; Wang, K.; Khan, M.; Wang, M.; Li, H. and Zeng, J.*
Small 2017, 13, 1602583.
98. Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution
Huang, R.; Sun, Z.; Chen, S.; Wu, S.; Shen, Z.; Wu, X.* and Zeng, J.*
Chem. Commun. 2017, 53, 6922.
97. More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor
Shen, X.; Pan, Y.; Liu, B.; Yang, J.; Zeng, J.* and Peng, Z.*
Phys. Chem. Chem. Phys. 2017, 19, 12628.
96. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence
Huang, H.; Liu, M.; Li, J.; Luo, L.; Zhao, J.; Luo, Z.; Wang, X.*; Ye, Z.; He, H.* and Zeng, J.*
Nanoscale 2017, 9, 104.
95. Gold atom-decorated CoSe2 nanobelts with engineered active sites for enhanced oxygen evolution
Zhao, X.; Gao, P.; Yan, Y.; Li, X.; Xing, Y.; Li, H.; Peng, Z.*; Yang, J. and Zeng, J.*
J. Mater. Chem. A 2017, 5, 20202.
94. 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets
Li, J.; Luo, L.; Huang, H.; Ma, C.; Ye, Z.; Zeng, J.* and He, H.*
J. Phys. Chem. Lett. 2017, 8, 1161.
93. Precisely controlled synthesis of Pt-Pd octahedral nanoframes as a superior catalyst towards oxygen reduction reaction
Ye, C.; Huang, H. and Zeng, J.*
Chin. J. Chem. Phys. 2017, 30, 581.
92. High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, J.; Jiao, M.; Lu, L.; Barkholtz, H.; Li, Y.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D; Zhuang, L.; Ma, C.; Zeng, J.; Zhang, B.; Su, D.; Song, P.; Xing, W.; Xu, W.*; Wang, Y.*; Jiang, Z.* and Sun, G.*
Nature Commun. 2017, 8, 15938.
91. Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide
Wang, X.; Du, L.; Du, M.; Ma, C.*; Zeng, J.; Jia, C.* and Si, R.*
Phys. Chem. Chem. Phys. 2017, 19, 14533.
90. Synthesis and metal-support interaction of subnanometer copper-palladium bimetallic oxide clusters for catalytic oxidation of carbon monoxide
Du, P.; Hu, X.; Wang, X.; Ma, C.*; Du, M.; Zeng, J.; Jia, C.*; Huang, Y. and Si, R.*
Inorg. Chem. Front. 2017, 4, 668.
89. Plasmon-modulated excitation-dependent fluorescence from activated CTAB molecules strongly coupled to gold nanoparticles
Ding, S.; Nan, F.; Liu, X.; Hao, Z.; Zhou, L.; Zeng, J.; Xu, H.; Zhang, W. * and Wang, Q. *
Sci. Rep. 2017, 7, 43282.
88. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.*; Ma, C.*; Si, R. and Zeng, J.*
Nature Commun. 2016, 7, 14036.
87. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition
Zhou, S.*; Miao, X.; Zhao, X.; Ma, C.; Qiu, Y.; Hu, Z.*; Zhao, J.; Shi, L. and Zeng, J.*
Nature Commun. 2016, 7, 11510.
86. Pt3Co octapods as superior catalysts of CO2 hydrogenation
Khan, M. U.; Wang, L.; Liu, Z.; Gao, Z.; Wang, S.; Li, H.; Zhang, W.; Wang, M.; Wang, Z.*; Ma, C. and Zeng, J.*
Angew. Chem. Int. Ed. 2016, 55, 9548.
85. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals
Chen, T.; Chen, S.; Zhang, Y.; Qi, Y.; Zhao, Y.; Xu, W.* and Zeng, J.*
Angew. Chem. Int. Ed. 2016, 55, 1839.
84. Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties
Meng, M.; Fang, Z.; Zhang, C.; Su, H.; He, R.; Zhang, R.; Li, H.; Li, Z-Y; Wu, X.; Ma, C.* and Zeng, J.*
Nano Lett. 2016, 16, 3036.
83. Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites
Liu, X.; Fang, Z.; Zhang, Q.; Huang, R.; Lin, L., Ye, C.; Ma, C.* and Zeng, J.*
Nano Res. 2016, 9, 2707.
82. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement
Nan, F.; Xie, F.-M.; Liang, S.; Ma, L.; Yang, D.-J.; Liu, X.-L.; Wang, J.-H.; Cheng, Z.-Q.; Yu, X.-F.; Zhou, L.*; Wang, Q.-Q.* and Zeng, J.*
Nanoscale 2016, 8, 11969.
81. Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness
Li, Q.; Chen, W.; Li, Y.; Guo, X.; Song, S.; Wang, W.; Liu, Y.; Li, J.; Yu H.* and Zeng, J.
Cellulose 2016, 23, 1375.
80. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation
Guo, L.-W.; Du, P.-P.; Fu, X.-P.; Ma, C.*; Zeng, J.; Si, R.*; Huang, Y.-Y.; Jia, C. J.*; Zhang, Y.-W. and Yan, C.-H.
Nature Commun. 2016, 7, 13481.
79. Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates
Wu, Y.; Zhuang, A.; Ye, C.; Zeng, J.; Pan, N. and Wang, X.*
ACS Catal. 2016, 6, 3072.
78. Structural determination of catalytically active subnanometer iron oxide clusters
Yang, Q.; Fu, X.-P.; Jia, C.-J.*; Ma, C.*; Wang, X.; Zeng, J; Si, R.*; Zhang, Y.-W. and Yan, C.-H.
Chinese J. Chem. Phys. 2016, 29, 687.
77. Ratio-controlled synthesis of CuNi octahedra and nanocubes with enhanced catalytic activity
Wang, M.; Wang, L.; Li, H.; Du, W.; Khan, M. U.; Zhao, S.; Ma, C.; Li, Z. and Zeng, J.*
J. Am. Chem. Soc. 2015, 137, 14027.
76. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction
Zhao, X.; Chen, S.; Fang, Z.; Ding, J.; Sang, W.; Wang, Y.; Zhao, J.; Peng, Z.* and Zeng, J.*
J. Am. Chem. Soc. 2015, 137, 2804.
75. Size-controlled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes
Chen, S.; Su, H.; Wang, Y.; Wu, W and Zeng, J.*
Angew. Chem. Int. Ed. 2015, 54, 108.
74. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals
Wang, L.; Zhao, S.; Liu, C.; Li, C.; Li, X.; Li, H.; Wang, Y.; Ma, C.; Li, Z.* and Zeng, J.*
Nano Lett. 2015, 15, 2875.
73. Rational design of metal nanoframes for catalysis and plasmonics
Fang, Z.; Wang, Y.; Liu, C.; Chen, S; Sang, W.; Wang, C.* and Zeng, J.*
Small 2015, 11, 2593. (invited review article).
72. One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies
Liu, X.; Xu, J.; Fang, Z.; Lin, L.; Qian, Y.; Wang, Y.; Ye, C.; Ma, C.* and Zeng, J.*
Nano Res. 2015, 8, 3612.
71. Concave Cu-Pd bimetallic nanocrystals: ligand-based co-reduction and mechanistic study
Zhang, L.; Su, H.; Sun, M.; Wang, Y.; Wu, W.; Yu, T.* and Zeng, J.*
Nano Res. 2015, 8, 2415.
70. Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth
Zhuang, A.; Zhao, Y.; Liu, X.; Xu, M.; Wang, Y.; Jeong, U.*; Wang, X. and Zeng, J.*
Nano Res. 2015, 8, 246.
69. Au-Pd alloy octapods with high electrocatalytic activity for the oxidation of formic acid
Wang, L.-B.; Wang, Y.-C.; Guo, H.-Y.; Huang, J.-L.; Zhao, Y.-L.; Liu, Q.-Y.; Wu, X.* and Zeng, J.*
Part. Part. Syst. Charact. 2015, 32, 295.
68. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides
Xiao, B.; Niu, Z.; Wang, Y.-G.; Jia, W.; Shang, J.; Zhang, L.; Wang, D.; Fu, Y.; Zeng, J.; He, W.; Li, J.; Yang, J.; Liu, L.* and Li, Y.*
J. Am. Chem. Soc. 2015, 137, 3791.
67. Direct observation of magnetic-Ion off-centering-induced ferroelectricity in multiferroic manganite Pr(Sr0.1Ca0.9)2Mn2O7
Ma, C.*; Lin, Y.; Yang, H.; Tian, H.; Shi, L.; Zeng, J. and Li, J.*
Adv. Mater. 2015, 27, 6328.
66. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties
Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J.W.; Kim, S.I.; Lee, K.H.* and Jeong, U.*
ACS Nano 2015, 9, 6843.
65. Chloride-induced shape transformation of silver nanoparticles in a water environment
Zhang, L.; Li, X.; He, R.; Wu, L.; Zhang, L.* and Zeng, J.
Environ. Pollut. 2015, 204, 145.
64. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties
He, R.; Wang, Y.-C; Wang, X.; Wen, X.; Wang, Z.; Liu, G.; Zhou, W.; Wen, L.; Li, Q.; Wang, X.; Chen, X.; Zeng, J.* and Hou, J.
Nature Commun. 2014, 5, 4327.
63. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates
Zhuang, A.; Li, J.-J.; Wang, Y.-C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. and Zeng, J.*
Angew. Chem. Int. Ed. 2014, 53, 6425.
62. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology
Sang, W.; Zheng, T.; Wang, Y.; Li, X.; Zhao, X.; Zeng, J.* and Hou. J.
Nano Lett. 2014, 14, 6666.
61. Facile synthesis of Cu-Pd bimetallic mutipods for application in cyclohexane oxidation
Zhang, Z.-Q; Huang, J.; Zhang, L.; Sun, M.; Wang, Y.-C.; Lin, Y. and Zeng, J.*
Nanotechnology 2014, 25, 435602.
60. Comparative study of aerogels obtained from differently prepared nanocellulose fibers
Chen. W.; Li, Q.; Wang, Y.; Yi. X.; Zeng, J.*; Yu, H.*; Liu, Y. and Li, J.
ChemSusChem 2014, 7, 154.(highlighted on the cover).
59. Versatile graphene quantum dots with tunable nitrogen doping
Dai, Y.*; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, T. H.; Sun. Y. and Zeng, J.*
Part. Part. Syst. Charact. 2014, 31, 597.(highlighted on the cover).
58. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals
Zheng, Y.; Zeng, J.; Ruditskiy, A.; Liu, M. and Xia, Y.*
Chem. Mater. 2014, 26, 23. (invited feature article, highlighted on the cover).
57. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance
Wang, L.-B.; Wang, Y.-C.; He, R.; Zhuang, A.; Wang, X.; Zeng, J.* and Hou, J. G.
J. Am. Chem. Soc. 2013, 135, 1272-1275.
56. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch
Zeng, J.; Goldfeld, D. and Xia, Y.*
Angew. Chem. Int. Ed. 2013, 52, 4169-4173.(chosen as a "Hot Paper" by the editors).
55. Metal-semiconductor hybrid nanocrystals: controlled synthesis, plasmonic modulation and photoluminescence properties
Chen, S.; He, X.; He, R. and Zeng, J.*
Sci. China Chem. 2013, 43, 667-676.(invited review article).
54. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores
Shao, M.*; He, G.; Peles, A.; Odell, J. H.; Zeng, J.; Su, D.; Tao, J.; Yu, T.; Zhu, Y. and Xia, Y.*
Chem. Comm. 2013, 49, 9030-9032.
53. Synthesis and characterization of pressure and temperature dual-responsive polystyrene microbeads
Zhu, C.; Deng, R.; Zeng, J.; Khalil, G. E.; Dabiri, D.; Gu, Z. and Xia, Y.*
Part. Part. Syst. Charact. 2013, 30, 542-548. (VIP article).
52. Seed-mediated synthesis of single-crystal gold nanospheres with controlled diameters in the range of 5-30 nm and their self-assembly upon dilution
Zheng, Y.; Ma, Y.; Zeng, J.; Zhong, X.; Jin, M.; Li, Z.-Y. and Xia, Y.*
Chem. Asian J. 2013, 8, 792-799. (VIP article, it was highlighted on the cover and in ChemistryViews.).
51. Aqueous-phase synthesis of single-crystal Pd seeds 3 nm in diameter and their use for the growth of Pd nanocrystals with different shapes
Zhu, C.; Zeng, J.; Lu, P.; Liu, J.; Gu, Z. and Xia, Y.*
Chem. Eur. J. 2013, 19, 5127-5133.
50. Symmetric and asymmetric Au-AgCdSe hybrid nanorods
Liang, S.; Liu, X.-L.; Yang, Y.-Z.; Wang, Y.-L.; Wang, J.-H.; Yang, Z.-J.; Wang, L.-B.; Jia, S.-F.; Yu, X.-F.*; Zhou, L.; Wang, J.-B.; Zeng, J.*; Wang, Q.-Q.* and Zhang, Z.
Nano Lett. 2012, 12, 5281-5286.
49. Hybrid nanomaterials: not just a pretty flower
Zeng, J. and Xia, Y.*
Nature Nanotechnol. 2012, 7, 415.
48. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics
Zeng, J.; Zhu, C.; Tao, J.; Jin, M.; Zhang, H.; Li, Z.-Y.; Zhu, Y. and Xia, Y.*
Angew. Chem. Int. Ed. 2012, 51, 2354-2358.(VIP article, highlighted on the back cover and in an accompanying article, as well as in C&EN News, 2011, December 19, p. 36).
47. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: from hybrid dimers to non-concentric and concentric bimetallic nanocrystals
Zhu, C.; Zeng, J. (equal contribution); Tao, J.; Zhu, Y.; Gu, Z. and Xia, Y.*
J. Am. Chem. Soc. 2012, 134, 15822-15831.
46. Quantitative analysis of the role played by poly(vinyl pyrrolidone) in seed-mediated growth of Ag nanocrystals
Xia, X.; Zeng, J. (equal contribution); Oetjen L.; Li, Q. and Xia, Y.*
J. Am. Chem. Soc. 2012, 134, 1793-1801.
45. Ternary graphene-TiO2-Fe3O4 nanocomposite as a re-collectable photocatalyst with enhanced durability
Lin, Y.; Geng, Z.; Cai, H.; Ma, L.; Chen, J.; Zeng, J.*; Pan, N. and Wang, X.*
Eur. J. Inorg. Chem. 2012, 28, 4439-4444.
44. Controlling the evolution of cubic Ag seeds into nanocrystals with different morphologies
Zeng, J.; Xia, X.; Zhang, Q.; Wang, Y. and Xia, Y.*
Sci. China Chem. 2012, 42, 1505-1512 (invited review article).
43. Facile synthesis of gold wavy nanowires and investigation of their growth mechanism
Zhu, C.; Peng, H.-C.; Zeng, J.; Liu, J.; Gu, Z. and Xia, Y.*
J. Am. Chem. Soc. 2012, 134, 20234-20237.
42. Recent developments in shape-controlled synthesis of silver nanocrystals
Xia, X.; Zeng, J.; Zhang, Q.; Moran, C. M. and Xia, Y.*
J. Phys. Chem. C 2012, 116, 21647-21656.(invited feature article, highlighted on the cover).
41. A Mechanistic study on the nucleation and growth of Au on Pd seeds with a cubic or octahedral shape
He, G.; Zeng, J.; Jin, M.; Zhang, H.; Lu, N.; Wang, J.; Kim, M. J. and Xia, Y.*
ChemCatChem 2012, 4, 1668-1674.(invited article, highlighted on the cover).
40. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth
Li, J.; Zheng, Y.; Zeng, J. and Xia, Y.*
Chem. Eur. J. 2012, 18, 8150-8156.
39. Controlled growth and magnetic properties of α-Fe2O3 nanocrystals: Octahedra, cuboctahedra and truncated cubes
Wang, L. B.; Song, L. X.*; Dang, Z.; Chen, J.; Yang, J. and Zeng, J.
CrystEngComm 2012, 14, 3355-3358.
38. Charge transfer and retention in directly coupled Au-CdSe nanohybrids
Gao, B.; Lin, Y.; Wei, S.; Zeng, J.; Liao, Y.; Chen, L.; Goldfeld, D.; Wang, X.; Luo, Y.; Dong, Z.* and Hou, J.*
Nano Res. 2012, 5, 88-98.
37. Successive deposition of Ag on Ag nanoplates: lateral versus vertical growth
Zeng, J.; Xia, X. (equal contribution); Rycenga, M.; Henneghan, P.; Li, Q. and Xia, Y.*
Angew. Chem. Int. Ed. 2011, 50, 244-249. (VIP article, it was highlighted on the frontispieces and in an accompanying article published in the same journal, 2011, 50, 992-993).
36. Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties
Xia, X.; Zeng, J. (equal contribution); McDearmon, B.; Zheng, Y.; Li, Q. and Xia, Y.*
Angew. Chem. Int. Ed. 2011, 50, 12542.(VIP article, highlighted on the inside cover).
35. Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape
Zeng, J.; Tao, J.; Su, D.; Qin, D. and Xia, Y.*
Nano Lett. 2011, 11, 3010-3015.
34. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies
Zhou, J.; Zeng, J. (equal contribution); Grant, J.; Wu, H. and Xia, Y.*
Small 2011, 7, 3308-3316. (VIP article, it was highlighted on the cover and in Materials View).
33. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions
Zeng, J.; Tao, J.; Li, W.; Grant, J.; Wang, P.; Zhu, Y. and Xia, Y.*
Chem. Asian J. 2011, 6, 376-379.
32. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications
Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C.; Zhang, Q.; Qin, D. and Xia, Y.*
Chem. Rev. 2011, 111, 3669-3712. (invited review article).
31. Chemical transformations of nanostructured materials
Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. and Jeong, U.*
Nano Today 2011, 6, 186-203. (invited review article).
30. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent
Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z. and Xia, Y.*
Angew. Chem. Int. Ed. 2011, 50, 10560-10564.
29. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump
Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D. and Xia, Y.*
Nano Lett. 2011, 11, 898-903.
28. Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation
Zheng, Y.; Tao, J.; Liu, H.; Zeng, J.; Yu, T.; Ma, Y.; Wu, L.; Zhu, Y.; Liu, J. and Xia, Y.*
Small 2011, 7, 2307-2312.
27. Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes
Dai, Y.; Jing, Y.; Zeng, J.; Qi, Q.; Wang, C.; Goldfeld, D.; Xu, C.; Zheng, Y. and Sun, Y.*
J. Mater. Chem. 2011, 21, 18174-18179.
26. Synthesis and anti-fake function design of multiple luminescent CdxZn1-xSe quantum dots
Bai, X.-L.*; Du, J.-Y.; Zeng, J.; Wu, B.; Yu, X.-D. and Fang, L.-H.
Chem. J. Chinese U. 2011, 32, 1261-1265.
25. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth
Zeng, J.*; Huang, J.; Liu, C.; Wu, C.; Lin, Y.; Wang, X.*; Zhang, S.; Hou, J. G.* and Xia, Y.
Adv. Mater. 2010, 22, 1936-1940.(highlighted on the inside cover).
24. Controlling the shapes of silver nanocrystals with different capping agents
Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y. and Xia, Y.*
J. Am. Chem. Soc. 2010, 132, 8552-8553.
23. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles
Zeng, J.; Zhang, Q.; Chen, J. and Xia, Y.*
Nano Lett. 2010, 10, 30-35.
22. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties
Yu, T.; Zeng, J. (equal contribution); Lim, B. and Xia, Y.*
Adv. Mater. 2010, 22, 5188-5192.
21. Facile synthesis of bimetallic Ag/Ni core/sheath nanowires and their magnetic and electrical properties
McKiernan, M.; Zeng, J.*; Ferdous, S.; Verhaverbeke, S.; Leschkies, K. S.; Gouk, R.; Lazik, C.; Jin, M.; Briseno, A. L. and Xia, Y.*
Small 2010, 6, 1927-1934.
20. Nanocrystal-based time-temperature indicators
Zeng, J.; Roberts, S. and Xia, Y.*
Chem. Eur. J. 2010, 16, 12559-12563.(Highlighted on the cover).
19. AuI: An alternative and potentially better precursor than AuIII for the synthesis of Au nanostructures
Zeng, J.; Ma, Y.; Jeong, U. and Xia, Y.*
J. Mater. Chem. 2010, 20, 2290-2301. (invited feature article).
18. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties
Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L. and Xia, Y.*
J. Am. Chem. Soc. 2010, 132, 11372-11378.
17. Facile synthesis of five-fold twinned, starfish-like Rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor
Zhang, H.*; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D. and Xia, Y.*
Angew. Chem. Int. Ed. 2010, 49, 5296-5300. (Highlighted in Nature Materials, 2010, 9, p. 605).
16. Seed-mediated synthesis of truncated gold decahedrons with a AuCl/oleylamine complex as precursor
Ma, Y.; Zeng, J.; Li, W.; McKiernan, M.; Xie, Z. and Xia, Y.*
Adv. Mater. 2010, 22, 1930-1934.
15. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties
Ma, Y.; Li, W.; Cho, E. C.; Li, Z.; Yu, T.; Zeng, J.; Xie, Z. and Xia, Y.*
ACS Nano 2010, 4, 6725-6734.
14. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles
Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.*; Yan, L.; Wang, X.* and Hou, J. G.
ACS Nano 2010, 4, 3033-3038.
13. Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe(III) species
Ma, Y.; Li, W.; Zeng, J.; McKiernan, M.; Xie, Z. and Xia, Y.*
J. Mater. Chem. 2010, 20, 3586-3589.
12. Dissolving Ag from Au-Ag alloy nanoboxes with H2O2: A method for both tailoring the optical properties and measuring the H2O2 concentration
Zhang, Q.; Cobley, C. M.; Zeng, J.; Wen, L.-P.; Chen, J.* and Xia, Y.*
J. Phys. Chem. C 2010, 114, 6396-6400.
11. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets
Dai, Y.; Cobley, C. M.; Zeng, J.; Sun, Y. and Xia, Y.*
Nano Lett. 2009, 9, 2455-2459.
10. Synthesis of gold nanostructures with controlled morphologies from the AuCl(oleylamine) complex
Ma, Y.; Zeng, J.; and Xia, Y.*
Acta Phys.-Chim. Sin. 2009, 25, 1026-1032. (invited review article).
9. UV-light induced fabrication of CdCl2 nanotubes through CdSe/Te nanocrystals based on dimension and configuration control
Zeng, J.; Liu, C.; Huang, J.; Wang, X.*; Zhang, S.; Li, G. and Hou, J. G.*
Nano Lett. 2008, 8, 1318-1322.
8. Enhancement of radiation cytotoxicity in breast cancer cells by localized attachment of gold nanoparticles
Kong, T.; Zeng, J. (equal contribution); Xing, J.*; Yang, X.; Yang, J.; Wang, X.; McQuarrie, S.; McEwan, A.; Chen, J.* and Roa, W.
Small 2008, 4, 1537-1543.
7. Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons
Tang, M.; Wang, M.; Xing, T.; Zeng, J.; Wang, H. and Ruan, D.*
Biomaterials 2008, 29, 4383-4391.
6. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons
Tang, M.; Xing, T.; Zeng, J.; Wang, H.; Li, C.; Yin, S.; Yan, D.; Deng, H.; Liu, J.; Wang, M.; Chen, J. and Ruan, D.*
Environ. Health Persp. 2008, 116, 915-922.
5. Necklace-like noble metal hollow-nanoparticle chains: synthesis and tunable optical properties
Zeng, J.; Huang, J.; Lu, W.; Wang, X.*; Wang, B.; Zhang, S. and Hou, J. G.*
Adv. Mater. 2007, 19, 2172-2176.
4. High pressure photoluminescence of CdZnSe quantum dots: alloying effect
Zhao, Z.; Zeng, J. (equal contribution); Ding, Z.*; Wang, X.*, Hou, J. G. and Zhang, Z.
J. Appl. Phys. 2007, 102, 053509.
3. Fine tuning photoluminescence properties of CdSe nanoparticles by surface states modulation
Zeng, J.; Lu, W.; Wang, X.*; Wang, B. and Hou, J. G.*
J. Colloid Interf. Sci. 2006, 298, 685-688.
2. Synthesis of core/shell nanoparticles of Au/CdSe via Au-Cd bialloy precursor
Lu, W.; Wang, B.*; Zeng, J.; Wang, X.; Zhang, S. and Hou, J. G.*
Langmuir 2005, 21, 3684-3687.
1. A novel property of styrene-butadiene-styrene/clay nanocomposites: radiation resistance
Zhang, W.; Zeng, J.; Liu, L. and Fang, Y.*
J. Mater. Chem. 2004, 14, 209-213.