Peer-Reviewed Articles:
 

2025

283. Site-specific stabilizing effect of single atoms on spinel oxides for acidic oxygen evolution

Zhang, Z.; Ma, P.; Jia, C.; Gao, W.; Liu, M.; Hui, W. N.; Zuo, M.; Zhou, S. and Zeng, J.*

eScience DOI: 10.1016/j.esci.2025.100402.


282. Reaction-induced dynamic evolution of PtIn/SiO₂ catalyst for propane dehydrogenation

Zhou, T.; Yan, H.; Li, W.; Zhang, W.; He, H.; Hu, S.; Wang, R.; Xiao, T.; Liu, L.; Zhang, L.; Wu, W.; Liu, C.; Zheng, X.; Pan, Y.; Zeng, J.* and Li, X.*

Nature Commun. 2025, 16, 5153.


281. Contrasting atomically dispersed metal catalysts supported on CeOₓ nanoislands with various ligand environments including chloride

Zhang, N.; Chen, Y.; Li, X;  Pao, C.-W.; Zhao, J.*; Gates, B. C. and Zeng, J.*

Angew. Chem. Int. Ed. DOI: 10.1002/anie.202507545.


280. Thermally triggered redox flexibility of Pt/CeO₂ cluster catalyst against in-situ atomic redispersion

Lei, H.; Zhang, N.; Hu, S.; Peng, F.; Zhou, J.; He, J.; Zhang, L.; Wang, H.; Ma, C.; Yan, H.*; Shimizu, K. and Zeng, J.*

Angew. Chem. Int. Ed. DOI: 10.1002/anie.202509239.


279. Upcycling surplus acetone into long-chain chemicals using a tandem electro-biosystem

Liu, C.; Zhao, J.; Tang, H.; Xue, J.; Xue, W.; Li, X.; Li, H.; Jiang, Q.; Zheng, T.*, Yu, T.*, Zeng, J.* and Xia, C.*

Nature Sustain. DOI: 10.1038/s41893-025-01568-y.


278. Isolated copper atoms boost *NO₃ adsorption and active hydrogen retention over zinc oxide for ammonia electrosynthesis at ampere-level current densities

Chen, Z.; Zhao, Y.; Huang, H.; Liu, G.; Zhang, H.; Yan, Y.; Li, H.; Liu, L.; Liu, M.*; Wang, D.; Zeng, J.*

J. Am. Chem. Soc. DOI: 10.1021/jacs.5c01863.


277. Harmonizing nanoparticle exsolution from Ce-Sm oxide matrix for stable methane dry reforming

Ye, Y.; Lei, H.; Qin, Y.; Wang, Z.; Hu, S.; Zhou, T.; Zhang, L.; Wang, R.; Xiao, Z.; Gao, X.; Ma, Q.; Shi, S.; Zhang, H.; Yan, H.*; Zhou, S.; Ma, C.; Liu, Z.; Tao, J. and Zeng, J.*

Angew. Chem. Int. Ed. DOI: 10.1002/anie.202503997.


276. Anion intercalation enables efficient and stable carboxylate upgrading via aqueous non-Kolbe electrolysis

Zhang, X.; Luo, L.; Liu, C.; Xue, W.; Ji, Y.; Zhao, D.; Liu, P.; Feng, X.; Luo, J.; Jiang, Q.; Zheng, T.; Li, X.; Xia, C.* and Zeng, J.*

Nature Commun. 2025, 16, 3719.


275. Role of site-specific iron in Fe-doped nickel hydroxide toward water oxidation revealed by spatially resolved imaging at the single-particle level

Wei, J.; Zhu, J.; Jin, R.; Liu, Y.*; Liu, G.; Fan, M.-H.; Liu, M.; Jiang, D. and Zeng, J.*

J. Am. Chem. Soc. 2025, 147, 16, 13502.


274. Modulating spatial distributions of single atoms on supports for enhanced oxygen evolution

Liu, Z.; Mei, K.; Kong, Y.; Liu, W.; Zou, J.; Gao, W.; Xue, J.; Yan, Y.; Hui, K. N.; Zhang, Z.* and Zeng, J.*

Nano Lett. 2025, 25, 5358.


273. Long-term CO₂ hydrogenation into liquid fuels with a record-high single-pass yield of 31.7% over interfacial Fe–Zn Sites

Zhang, L.; Zhao, J.; Li, T.; Gao, W.*; Li, H.*; Wu, L.; Xia, W.; Wu, W.; Wang, C.; Wang, F.; Yasuda, S.; Guo, X.; He, Y.; Yang, G.; Liu, G.; Jin, Z.; Zeng, J.* and Tsubaki, N.*

Nano Lett. 2025, 25, 4904.


272. Ultrafine metal nanoparticles isolated on oxide nano-islands as exceptional sintering-resistant catalysts

Zhou, T.; Li, X.; Zhao, J.; Luo, L.; Wang, Y.; Xiao, Z.; Hu, S.; Wang, R.; Zhao, Z.; Liu, C.; Wu, W.; Li, H.; Zhang, Z.; Zhao, L.; Yan, H.* and Zeng, J.*

Nature Mater. 2025, 24, 891. (Highlighted in News and Views in Nature Mater. 2025, 24, 810.)


271. Aegis of oxide passivation stabilizes catalytic methanol steam reforming

Yan, H. and Zeng, J.*

Sci. China Chem. 2025, 68, 6, 2215.


270. Crystallinity of cerium oxide dictates reactivity of platinum catalysts

Zhang, N.; Zhao, J.; Wei, J.; Li, H.; Wu, W.; Li, X.*, Liu, J.* and Zeng, J.*

Nano Lett. 2025, 25, 4046.


269. Stabilizing supported atom-precise low-nuclearity platinum cluster catalysts by nanoscale confinement

Chen, Y.; Zhao, J.; Zhao, X.; Wu, D.; Zhang, N.; Du, J.; Zeng, J.*; Li, X.*; Salmenron, M.; Liu, J.* and Gates, B. C.*

Nature Chem. Eng. 2025, 2, 38.


268. General synthesis of neighboring dual-atomic sites with a specific pre-designed distance via an interfacial-fixing strategy

Yan, Y.; Yu, R.; Liu, M.*; Qu, Z.; Yang, J.; He, S.; Li, H.* and Zeng, J.*

Nature Commun. 2025, 16, 334.

 
267. A scenario for a carbon-neutral ammonia-fueled engine mediated by catalytic NH₃ cracking and CO₂ hydrogenation
Ren, J.; Li, H.*; Lou, H.; Zhou, W.; Zeng, F.; Wang, Y.; Liu, X.; Mevrahtu, C.; Pei, G.; Cao, J.-P.; Yao, T.*; Wang, Z* and Zeng, J.*
Angew. Chem. Int. Ed. 2025, 64, 8, e202420292.
 

2024

266. Efficient ethylene electrosynthesis through C–O cleavage promoted by water dissociation
Liang, Y.; Li, F.; Miao, R. K.; Hu, S.; Ni, W.; Zhang, S.; Liu, Y.; Bai, Y.; Wan, H.; Ou, P.; Li, X.-Y.; Wang, N.; Park, S.; Li, F.*; Zeng, J.*; Sinton, D.* and Sargent, E. H.*
Nature Synth. 2024, 3, 1104. (Highlighted in News and Views in Nature Synth., 2024, 3, 1068)


265. Synthesis of hydroxylamine from air and water via a plasma-electrochemical cascade pathway
Kong, X.; Ni, J.; Song, Z.; Yang, Z.; Zheng, J.; Xu, Z.; Qin, L.; Li, H.; Geng, Z.* and Zeng, J.*
Nature Sustain. 2024, 7, 652.


264. Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis
Ma, X.; Yin, H.; Pu, Z.; Zhang, X.; Hu, S.; Zhou, T.; Gao, W.; Luo, L.*; Li, H.* and Zeng, J.*
Nature Commun. 2024, 15, 8470.


263. Ligand-tuning copper in coordination polymers for efficient electrochemical C–C coupling
Yang, Y.; Zhang, C.; Zhang, C.; Shi, Y.; Li, J.; Johannessen, B.; Liang, Y.; Zhang, S.; Song, Q.; Zhang, H.; Huang, J.; Ke, J.; Zhang, L.; Song, Q.; Zeng, J.; Zhang, Y.; Geng, Z.; Wang, P.-S.*; Wang, Z.*; Zeng, J.* and Li, F.*
Nature Commun. 2024, 15, 6316.
 
262. Facet sensitivity of iron carbides in Fischer-Tropsch synthesis
Wu, W.; Luo, J.; Zhao, J.; Wang, M.; Luo, L.; Hu, S.; He, B.; Ma, C.; Li, H.* and Zeng, J.*
Nature Commun. 2024, 15, 6108. (Editors' Highlights)


261. Spatial decoupling of bromide-mediated process boosts propylene oxide electrosynthesis
Chi, M.; Ke, J.; Liu, Y.; Wei, M.; Li, H.; Zhao, J.; Zhou, Y.; Gu, Z.; Geng, Z.* and Zeng, J.*
Nature Commun. 2024, 15, 3646.
 
260. Efficient tandem electroreduction of nitrate into ammonia through coupling Cu single atoms with adjacent Co3O4
Liu, Y.; Wei, J.; Yang, Z.; Zheng, L.; Zhao, J.; Song, Z.; Zhou, Y.; Cheng, J.; Meng, J.; Geng, Z.* and Zeng, J.*
Nature Commun. 2024, 15, 3619.


259. Distance effect of single atoms on stability of cobalt oxide catalysts for acidic oxygen evolution
Zhang, Z.; Jia, C.; Ma, P.; Feng, C.; Yang, J.; Huang, J.; Zheng, J.; Zuo, M.; Liu, M.; Zhou, S.* and Zeng, J.*
Nature Commun. 2024, 15, 1767. (Editors' Highlights)


258. Site-specific metal-support interaction to switch the activity of Ir single atoms for oxygen evolution reaction
Wei, J.; Tang, H.; Sheng, Li.; Wang, R.; Fan, M.; Wan, J.; Wu, Y.; Zhang, Z.*; Zhou, S. and Zeng, J.*
Nature Commun. 2024, 15, 559.
 

257. Experimental demonstration of topological catalysis for CO2 electroreduction
Kong, X.; Liu, Z.; Geng, Z.; Zhang, A.; Guo, Z.; Cui, S.; Xia, C.; Tan, S.; Zhou, S.; Wang, Z.* and Zeng, J.*
J. Am. Chem. Soc. 2024, 146, 10, 6536.


256. Progressive fabrication of a Pt-based high-entropy-alloy catalyst toward highly efficient propane dehydrogenation
Luo, J.; Li, X.; Ye, Y.; Zhou, T.; Wu, W.; Li, H.; Yang, Q.; Yan, H.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 64, e202419093.
  
255. Highly selective synthesis of acetic acid from hydroxyl-mediated oxidation of methane at low temperatures
Wu, B.; Yin, H.; Ma, X.; Liu, R.; He, B.; Li, H.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 64, e202412995.


254. Oriented synthesis of glycine from CO2, N2, and H2O via a cascade process
Kong, X.; Liu, C.; Xu, Z.; Zhao, J.; Ni, J.; Li, H.; Zheng, T.; Xia, C.*; Geng, Z.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202411160.
 
253. Facet-dependent diversity of Pt–O coordination for Pt1/CeO2 catalysts achieved by oriented atomic deposition
Yan, H.; Lei, H.; Qin, X.; Liu, J.-C.*; Cai, L.; Hu, S.; Xiao, Z.; Peng, F.; Wang, W.-W.; Jin, Z.; Yi, X.; Zheng, A.; Ma, C.; Jia, C.-J.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202411264.


252. Optimizing the intermediates adsorption by manipulating the second  coordination shell of Ir single atoms for efficient water oxidation
Wei, J.; Tang, H.; Liu, Y.*; Liu, G.; Sheng, L.; Fan, M.; Ma, Y.; Zhang, Z. and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202410520.


251. A general strategy based on hetero-charge coupling effect for constructing single-atom sites
Peng, C.; Wang, M.; Li, S.; Zeng, X.; Wang, J.; Wang, W.; Zhang, Z.; Ye, M.; Wei, X.; Wu, K.*; Zhang, K.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202408771.


250. Recycling valuable alkylbenzenes from polystyrene through methanol-assisted depolymerization
Zeng, L.; Yan, T.; Du, J.; Liu, C.; Dong, B.; Qian, B.; Xiao, Z.; Su, G.; Zhou, T.; Peng, Z.; Wang, Z.; Li, H.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202404952.
 
249. The importance of sintering-induced grain boundaries in copper catalysis to improve carbon-carbon coupling
Wu, W.; Luo, L.; Li, Z.; Luo, J.; Zhao, J.; Wang, M.; Ma, X.; Hu, S.; Chen, Y.; Chen, W.; Wang, Z.; Ma, C.; Li, H.* and Zeng, J.*
Angew. Chem. Int. Ed. 2024, 63, e202404983.


248. Close intimacy between PtIn clusters and zeolite channels for ultrastability toward propane dehydrogenation
Luo, L.; Zhou, T.; Li, W.; Li, X.; Yan, H.; Chen, W.; Xu, Q.; Hu, S.; Ma, C.; Bao, J.; Pao, C.-W.; Wang, Z.; Li, H.; Ma, X.*; Luo, L.* and Zeng, J.*
Nano Lett. 2024, 24, 24, 7236.
 
247. CO-assisted methane oxidation into oxygenates over surface platinum–titanium alloyed layers
Yin, H.; Wu, B.; Ma, X.; Su, G.; Han, M.; Lin, H.; Liu, X.; Li, H.* and Zeng, J.*
Nano Lett. 2024, 24, 16, 5002.


246. Bipyridine-confined silver single-atom catalysts facilitate in-plane C–O coupling for propylene electrooxidation
Chi, M.; Zhao, J.; Ke, J.; Liu, Y.; Wang, R.; Wang, C.; Hung, S.-F.; Lee, T.-J.; Geng, Z.* and Zeng, J.*
Nano Lett. 2024, 24, 5, 1801.
 
245. Efficient interfacial sites between metallic and oxidized cobalt for propene hydroformylation
Pu, Z.; Zhao, J.; Yin, H.; Zhao, J.; Ma, X.* and Zeng, J.*
Nano Lett. 2024, 24, 3, 852.


244. Orienting electron fillings in d orbitals of cobalt single atoms for effective zinc–air battery at a subzero temperature
Yan, Y.; Wen, B.; Liu, M.*; Lei, H.; Yang, J.; He, S.; Qu, Z.; Xia, W.; Li, H.* and Zeng, J.*
Adv. Funct. Mater. 2024, 34, 30, 2316100.


243. Recycle of organic ligands and solvents for successive synthesis of Cu-based nanocrystals towards CO2 hydrogenation
Xin, Y.; Xie, Z.; Liu, R.; Li, Q.; Wang, Z.; Cao, D.; Li, S.; Zhang, L.; Hu, S.; Li, H.; He, R.; Wang, L.* and Zeng, J.*
J. Mater. Chem. A 2024, 12, 28786.
 
242. Shifting ceria’s function from inhibitor to promotor by oxygen vacancies
Lin, H.; Yin, H.; Wu, B.; Li, H. and Zeng, J.*
Sci. Bull. 2024, 69, 19, 2978.
 
241. Thiol ligand-modified Au for highly efficient electroreduction of nitrate to ammonia
Wu, Y.; Kong, X.; Su, Y.; Zhao, J.; Ma, Y.; Ji, T.; Wu, D.; Meng, J.; Liu, Y.*; Geng, Z.* and Zeng, J.*
Precis. Chem. 2024, 2, 3, 112.


240. Synergistic effect of heterogeneous single atoms and clusters for improved catalytic performance
Liu, L.; Gao, W.; Ma, Y.; Mei, K.; Wu, W.; Li, H.; Zhang, Z.* and Zeng, J.*
JUSTC 2024, 54, 0605.


239. Design of efficient catalysts and research of catalytic mechanisms for CO2 hydrogenation to liquid products
Xin, Y. and Zeng, J.*
Clean Coal Technol. 2024, 30, 12, 1.


238. Metabolic engineering of yeast for the production of carbohydrate-derived foods and chemicals from C1–3 molecules
Tang, H.; Wu, L.; Guo, S.; Cao, W.; Ma, W.; Wang, X.; Shen, J.; Wang, M.; Zhang, Q.; Huang, M.; Luo, X.; Zeng, J.; Keasling, J. D.* and Yu, T.*
Nature Catal. 2024, 7, 21.


237. Synthesis of metal–nitrogen–carbon electrocatalysts with   atomically regulated nitrogen-doped polycyclic aromatic hydrocarbons
Chen, S.; Yan, H.-M.; Tseng, J.; Ge, S.; Li, X.; Xie, L.; Xu, Z.; Liu, P.; Liu, C.; Zeng, J.; Wang, Y.-G.* and Wang, H.-L.*
J. Am. Chem. Soc. 2024, 146, 20, 13703.


236. Cascade synthesis of Fe-N2-Fe dual-atom catalysts for superior oxygen catalysis
Zhao, S.; Liu, M.; Qu, Z.; Yan, Y.*; Zhang, Z.; Yang, J.; He, S.; Xu, Z.; Zhu, Y.; Luo, L.*; Hui, K. N.; Liu, M.* and Zeng, J.
Angew. Chem. Int. Ed. 2024, 63, e202408914.


2023

235. Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons
Du, J.; Zeng, L.; Yan, T.; Wang, C.; Wang, M.; Luo, L.; Wu, W.; Peng, Z.; Li, H. and Zeng, J.*
Nature Nanotechnol. 2023, 18, 772. (Highlighted in News and Views in Nature Sustain. 2023, 6, 1518)

 
234. Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion
Dai, Y.; Li, H.; Wang, C.; Xue, W.; Zhang, M.; Zhao, D.; Xue, J.; Li, J.; Luo, L.; Liu, C.; Li, X.; Cui, P.; Jiang, Q.; Zheng, T.; Gu, S.; Zhang, Y.; Xiao, J.*; Xia, C.* and Zeng, J.*
Nature Commun. 2023, 14, 3382.
 
233. Direct synthesis of extra-heavy olefins from carbon monoxide and water
Wang, C.; Du, J.; Zeng, L.; Li, Z.; Dai, Y.; Li, X.; Peng, Z.; Wu, W.; Li, H.* and Zeng, J.*
Nature Commun. 2023, 14, 2857.
 
232. Electrosynthesis of polymer-grade ethylene via acetylene semihydrogenation over undercoordinated Cu nanodots
Xue, W.; Liu, X.; Liu, C.; Zhang, X.; Li, J.; Yang, Z.; Cui, P.; Peng, H.; Jiang, Q.; Li, H.; Xu, P.; Zheng, T.*; Xia, C.* and Zeng, J.*  
Nature Commun. 2023, 14, 2137. (Editors' Highlights)
 
231. Stabilizing copper sites in coordination polymers toward efficient electrochemical C-C coupling
Liang, Y.; Zhao, J.; Yang, Y.; Hung, S.-F.; Li, J.; Zhang, S.; Zhao, Y.; Zhang, A.; Wang, C.; Appadoo, D.; Zhang, L.; Geng, Z.*; Li, F.* and Zeng, J.*
Nature Commun. 2023, 14, 474.
 
230. Selective CO2 electrolysis to CO using isolated antimony alloyed copper
Li, J.; Zeng, H.; Dong, X.; Ding, Y.; Hu, S.; Zhang, R.; Dai, Y.; Cui, P.; Xiao, Z.; Zhao, D.; Zhou, L.; Zheng, T.; Xiao, J.*; Zeng, J.* and Xia, C.*
Nature Commun. 2023, 14, 340.

229. Dynamic metal–ligand coordination boosts CO2 electroreduction
Kong, X.; Zhao, J.; Xu, Z.; Wang, Z.; Wu, Y.; Shi, Y.; Li, H.; Ma, C.; Zeng, J. and Geng, Z.*
J. Am. Chem. Soc. 2023, 145, 27, 14903.
 
228. Dynamically reversible interconversion of molecular catalysts for efficient electrooxidation of propylene into propylene glycol
Ke, J.; Chi, M.; Zhao, J.; Liu, Y.; Wang, R.; Fan, K.; Zhou, Y.; Xi, Z.; Kong, X.; Li, H.; Zeng, J. and Geng, Z.*
J. Am. Chem. Soc. 2023, 145, 16, 9104.
 
227. Exploring the strain effect in single particle electrochemistry using Pd nanocrystals
Zhao, J.; Wang, M.; Peng, Y.; Ni, J.; Hu, S.; Zeng, J.* and Chen, Q.*
Angew. Chem. Int. Ed. 2023, e202304424.
 
226. Regulating spin states in oxygen electrocatalysis
Zhang, Z.; Ma, P.; Luo, L.; Ding, X.; Zhou, S.* and Zeng, J.*
Angew. Chem. Int. Ed. 2023, e202216837.
   
225. One-step approach for constructing high-density single-atom catalysts toward overall water splitting at industrial current densities
Cao, D.; Zhang, Z.; Cui, Y.; Zhang, R.; Zhang, L.; Zeng, J.* and Cheng, D.*  
Angew. Chem. Int. Ed. 2023, e202214259.
 
224. Rapid production of kilogram-scale graphene nanoribbons with tunable interlayer spacing for an array of renewable energy
Liu, F.; Hu, Y.; Qu, Z.; Ma, X.; Li, Z.; Zhu, R.; Yan, Y.*; Wen, B.; Ma, Q.; Liu, M.; Zhao, S.; Fan Z.; Zeng, J.; Liu, M.*; Jin, Z.* and Lin, Z.*
Proc. Natl. Acad. Sci. 2023, 120, 26, e2303262120.
 
223. Oxygen vacancy-rich TiO2 as an efficient non-noble metal catalyst toward mild oxidation of methane using hydrogen peroxide as the oxidant
Yin, H.; Pu, Z.; Xue, J.; Ma, P.; Wu, B.; Han, M.; Lin, H.; Luo, Z.; Zeng, J.; Ma, X.* and Li, H.*
ACS Catal. 2023, 13, 11, 7608.
 
222. Amino-functionalized Cu for efficient electrochemical reduction of CO to acetate
Wang, Y.; Zhao, J.; Cao, C.; Ding, J.; Wang, R.; Zeng, J.*; Bao, J.* and Liu, B.*
ACS Catal. 2023, 13, 6, 3532.
 
221. Remote synergy between heterogeneous single atoms and clusters for enhanced oxygen evolution
Ding, X.; Jia, C.; Ma, P.; Chen, H.; Xue, J.; Wang, D.; Wang, R.; Cao, H.; Zuo, M.; Zhou, S.; Zhang, Z.*, Zeng, J.* and Bao, J.*
Nano Lett. 2023, 23, 8, 3309.
 
220. Acidic conditions for efficient carbon dioxide electroreduction in flow and MEA cells
Yu, J; Xiao, J.; Ma, Y.; Zhou, J.; Lu, P.; Wang, K.; Yan, Y.; Zeng, J.; Wang, Y.*; Song, S.* and Fan, Z.*
Chem. Catal. 2023, 3, 3, 100670.
 
219. Biofuel synthesis from carbon dioxide via a bio-electrocatalysis system
Bi, H.; Wang, K.; Xu, C.; Wang, M.; Chen, B.; Fang, Y.; Tan, X.*; Zeng, J. and Tan, T.*
Chem. Catal. 2023, 3, 3, 100557.
 
218. A promoted PtFe/SiO2 catalyst with low Pt concentration for propane dehydrogenation
Luo, L.; Zeng, Z.; Zhou, T.; Luo, J.; Chen, X.; Li, X.*; Yan, H.* and Zeng, J.
Catal. Sci. Technol. 2023, 13, 3395.
 
217. In‐situ adaptive evolution of rhodium oxide clusters into single atoms via mobile rhodium‐adsorbate intermediates
Pu, Z.; Yin, H.; Ma, X.; Zhao, J. and Zeng, J.*
Chinese J. Catal. 2023, 48, 247.
 
216. Confinement synergy at the heterointerface for enhanced oxygen evolution
Wang, D.; Ruan, S.; Ma, P.; Wang, R.; Ding, X.; Zuo, M.; Zhang, L.; Zhang, Z.*; Zeng, J.* and Bao, J.*
Nano Res. 2023, 16, 8793.
 
215. Rational engineering of 2D materials as advanced catalyst cathodes for high‐performance metal–carbon dioxide batteries
Liu, F.; Zhou, J.; Wang, Y.; Xiong, Y.; Hao, F.; Ma, Y.; Lu, P.; Wang, J.; Yin, J.; Wang, G.; Yu, J.; Yan, Y.; Zhu, Z.; Zeng, J. and Fan, Z.*
Small Struct. 2023, 2300025.
 
214. Efficient electroreduction of nitrate to ammonia with CuPd nanoalloy catalysts
Song, Z.; Qin, L.; Liu, Y.; Zhong, Y.; Guo, Q.*; Geng, Z.* and Zeng, J.*
ChemSusChem 2023, 16, e202300202.
 
213. 电化学与合成生物学耦合 实现复杂天然产物制备    
曾杰. 《前沿科学》, 2023, 17, 15.
 
212. Directing in-situ self-optimization of single-atom catalysts for improved oxygen evolution
Ma, P.; Feng, C.; Chen, H.; Xue, J.; Ma, X.; Cao, H.; Wang, D.; Zuo, M.; Wang, R.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J. and Bao, J.  
J. Energy. Chem. 
2023, 80, 284.

   
211. Photo- and electrocatalytic CO2 reduction based on stable lead-free perovskite Cs2PdBr6
Wu D.; Wang, C.; Huo, B.; Hu, K.; Mao, X.; Geng, Z.*; Huang, Q.*; Zhang, W.*; Zeng, J. and Tang, X.*
Energy Environ. Matter. 2023, 6, e12411.
   
210. Mitigating carbonate formation in CO2 electrolysis
Yang, Y.; Shi, Y.; Yu, H.; Zeng, J.; Li, K.* and Li, F.*
Next Energy 2023, 1, 3, 100030.
 

2022

209. Functional CeOx nanoglues for robust atomically dispersed catalysts
Li, X.; Pereira-Hernández, X. I.; Chen, Y.; Xu, J.; Zhao, J.; Pao, C.-W.; Fang, C.-Y.; Zeng, J.*; Wang, Y.*; Gates, B. C.* and Liu, J.*  
Nature 2022, 611, 284.
 
208. Upcycling CO2 into energy-rich long-chain compounds via electrochemical and metabolic engineering
Zheng, T.; Zhang, M.; Wu, L.; Guo, S.; Liu, X.; Zhao, J.; Xue, W.; Li, J.; Liu, C.; Li, X.; Jiang, Q.; Bao, J.; Zeng, J.*; Yu, T.* and Xia, C.*
Nature Catal. 2022, 5, 388. (Highlighted in News and Views in  Nature Catal. 2022, 5, 357)    

 
207. Volcano-type relationship between oxidation states and catalytic activity of single-atom catalysts towards hydrogen evolution
Cao, D.;  Xu, H.; Li, H.; Feng, C.; Zeng, J.* and Cheng, D.*
Nature Commun. 2022, 13, 5843.
 
206. Ambient-pressure hydrogenation of CO2 into long-chain olefins
Li, Z.; Wu, W.; Wang, M.; Wang, Y.; Ma, X.; Luo, L.; Chen, Y.; Fan, K.; Pan, Y.; Li, H.* and Zeng, J.*
Nature Commun. 2022, 13, 2396.
 
205. Selectively anchoring single atoms on specific sites of supports for improved oxygen evolution
Zhang, Z.; Feng, C.; Wang, D.; Zhou, S.*; Wang, R.; Hu, S.; Li, H.; Zuo, M.; Kong, Y.*; Bao, J.* and Zeng, J.*
Nature Commun. 2022, 13, 2473.
 
204. Facet-dependent electrooxidation of propylene into propylene oxide over Ag3PO4 crystals
Ke, J.; Zhao, J,; Chi, M.; Wang, M.; Kong, X.; Chang, Q.; Zhou, W.; Long, C.; Zeng, J. and Geng, Z.*
Nature Commun. 2022, 13, 932.
 
203. Tuning the electronic and steric interaction at the atomic interface for enhanced oxygen evolution
Feng, C.; Zhang, Z.; Wang, D.; Kong, Y.; Wei, J.; Wang, R.; Ma, P.; Li, H.; Geng, Z.; Zuo, M.; Bao, J.; Zhou, S.* and Zeng, J.*
J. Am. Chem. Soc. 2022, 144, 21, 9271.
 
202. Efficient electroreduction of nitrate into ammonia at ultra-low concentrations via enrichment effect
Song, Z.; Liu, Y.; Zhong, Y.; Guo, Q.; Zeng, J. and Geng, Z.*
Adv. Mater. 2022, 34, 202204306.
 
201. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4
Liu, P.; Huang, Z.; Gao, X.; Hong, X.; Zhu, J.; Wang, G; Wu, Y.; Zeng, J. and Zheng, X*.
Adv. Mater. 2022, 34, 2200057.
 
200. CO2 hydrogenation over Copper/ZnO single-atom catalysts: water-promoted transient synthesis of methanol
Wu, W.; Wang, Y.; Luo, L.; Wang, M.; Li, Z.; Chen, Y.; Wang, Z.; Chai, J.; Cen, Z.; Shi, Y.; Zhao, J.; Zeng, J. and Li, H.*
Angew. Chem. Int. Ed. 2022, 61(48), e202213024.
 
199. Nanoconfinement engineering over hollow multi-shell structured copper towards efficient electrocatalytical C-C coupling
Liu, C.; Zhang, M.; Li, J.; Xue, W.; Zheng, T.*; Xia, C.* and Zeng, J.*
Angew. Chem. Int. Ed. 2022, 61(3), e202113498.
 
198. Photocatalytic conversion of methane: recent advancements and prospects
Li, Q.; Ouyang, Y.; Li, H.; Wang, L.* and Zeng, J.*
Angew. Chem. Int. Ed. 2022, 61(2), e202108069.
 
197. Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio
Kong, X.; Wang, C.; Xu, Z.; Zhong, Y.; Liu, Y.; Qin, L.; Zeng, J. and Geng, Z.*
Nano Lett. 2022, 22, 19, 8000.
 
196. Understanding the effect of *CO coverage on C–C coupling toward CO2 electroreduction
Kong, X.; Zhao, J.; Ke, J.; Wang, C.; Li, S.; Si, R.; Liu, B.; Zeng, J. and Geng, Z.*
Nano Lett. 2022, 22, 9, 3801.
 
195. Adjusting local CO confinement in porous-shell Ag@Cu catalysts for enhancing C-C coupling towards CO2 Eletroreduction
Zhong, Y.; Kong, X.; Song, Z.; Liu, Y.; Peng, L.; Zhang, L.; Luo, X.; Zeng, J. and Geng, Z.*
Nano Lett. 2022, 22, 6, 2554.
 
194. Heterogeneous catalysts toward CO2 hydrogenation for sustainable carbon cycle
Wang, M.; Luo, L.; Wang, C.; Du, J.; Li, H.* and Zeng, J.*
Acc. Mater. Res. 2022, 3, 6, 565.
 
193. Neighboring cationic vacancy assisted adsorption optimization on single-atom sites for improved oxygen evolution
Wang, D.; Xue, J; Ding, X.; Wei, J.; Feng, C.; Wang, R.; Ma, P.; Wang, S.; Cao, H.; Wang, J.; Zuo, M.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.*
ACS Catal. 2022, 12, 19, 12458.
 
192. Tuning the interaction between ruthenium single atoms and the second coordination sphere for efficient nitrogen photofixation
Zhang, Y.; Wang, Q.; Yang, S.; Wang, H.; Rao, D.; Chen, T.; Wang, G.; Lu, J.; Zhu, J.; Wei, S.; Zheng, X.* and Zeng, J.
Adv. Funct. Mater. 2022, 32, 2112452.
 
191. Stretching C-H bond in methane by solid frustrated Lewis pairs
Zhao, J.; Yan, H. and Zeng, J.*
Chem. Catal. 2022, 2, 7, 1521.
 
190. Modulating hydrogen bonding in single-atom catalysts to break scaling relation for oxygen evolution
Ma, P.; Feng, C.; Kong, Y.; Wang, D.; Zuo, M.; Wang, S.; Wang, R.; Kuang, L.; Ding, X.; Zhou, S.; Zhang, Z.*; Zeng, J.* and Bao, J.*
Chem. Catal. 2022, 2, 2764.
 
189. Promoting N2 electroreduction into NH3 over porous carbon by introducing oxygen-containing groups
Song, Z.; Liu, Y.; Zhao, J.; Zhong, Y.; Qin, L.; Guo, Q.; Geng, Z.* and Zeng, J.
Chem. Eng. J. 2022, 434, 134636.
 
188. A novel 2D Co3(HADQ)2 metal-organic framework as a highly active and stable electrocatalyst for acidic oxygen reduction
Iqbal, R.; Ali, S.; Yasin, G.; Ibraheem, S.; Tabish, M.; Hamza, M.; Chen, H.; Xu, H.; Zeng, J. and Zhao, W.*
Chem. Eng. J. 2022, 430, 132642.
 
187. Promoting electrocatalytic CO2 methanation using a molecular modifier on Cu surfaces
Wang, C.; Kong, X.; Huang, J.; Yang, Y.; Zheng, H.; Wang, H.; Dai, S.; Zhang, S.; Liang, Y.; Geng, Z.*; Li, F.* and Zeng, J.*
J. Mater. Chem. A 2022, 10, 25725.
 
186. Single atoms supported on metal oxides for energy catalysis
Li, R.; Luo, L.; Ma, X.; Wu, W.; Wang, M. and Zeng, J.*
J. Mater. Chem. A 2022, 10, 5717.
 
185. Highly active and thermostable submonolayer La(NiCo)OΔ catalyst stabilized by a perovskite LaCrO3 support
Zhao, T.; Zhao, J.; Tao, X.; Yu, H.; Li, M.; Zeng, J. and Wang, H.*
Commun. Chem. 2022, 5, 70.
 
184. Atomically dispersed platinum in surface and subsurface sites on MgO have contrasting catalytic properties for CO oxidation
Chen, Y.; Rana, R.; Huang, Z.; Vila, F. D.; Sours, T.;Perez-Aguilar, J. E.; Zhao, X.; Hong, J.; Hoffman, A. S.; Li, X.; Shang, C.; Blum, T.; Zeng, J.; Chi, M.; Salmeron, M.; Kronawitter, C. X.; Bare, S. R.*; Kulkarni, A. R.* and Gates, B. C.*
J. Phys. Chem. Lett. 2022, 13, 17, 3896.
 
183. Progresses on carbon dioxide electroreduction into methane
Zheng, H.; Yang, Z.; Kong, X.; Geng, Z.* and Zeng, J.*
Chin. J. Catal. 2022, 43, 1634.
 
182. Low-temperature C–H bond activation: ethylbenzene-to-styrene conversion on rutile TiO2(110)
Lai, Y.; Pu, Z.; Liu, P.; Li, F.; Zeng, J.*; Yang, X. and Guo, Q.*
J. Phys. Chem. C 2022, 126, 14, 6231.
 
181. Electrodeposited highly-oriented bismuth microparticles for efficient CO2 electroreduction into formate
Lin, C.; Liu, Y.; Kong, X.; Geng, Z.* and Zeng, J.*
Nano Res. 2022, 15, 10078.
 
180. Lysine-functionalized SnO2 for efficient CO2 electroreduction into formate
Lin, C.; Xu, Z.; Kong, X.; Zheng, H.; Geng, Z.* and Zeng, J.*
ChemNanoMat 2022, 8, e202200020.
 
179. Molecular stabilization of sub-nanometer Cu clusters for selective CO2 electromethanation
Zhang, H.; Yang, Y.; Liang, Y.; Li, J.; Zhang, A.; Zheng, H.; Geng, Z.*; Li, F.* and Zeng, J.*
ChemSusChem 2022, 15(1), e202102010.
 

2021

178. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying
Zheng, T.; Liu, C.; Guo, C.; Zhang, M.; Li, X.; Jiang, Q.; Xue, W.; Li, H.; Li, A.; Pao, C.-W.; Xiao, J.*; Xia, C.* and Zeng, J.*
Nature Nanotechnol. 2021, 16, 1386.
 
177. Water enables mild oxidation of methane to methanol on gold single-atom catalysts
Luo, L.; Luo, J.; Li, H.*; Ren, F.; Zhang, Y.; Liu, A.; Li, W.* and Zeng, J.*
Nature Commun. 2021, 12, 1218.
 
176. Symmetry-breaking sites for activating linear carbon dioxide molecules
Li, H.; Zhao, J.; Luo, L.; Du, J. and Zeng, J.*
Acc. Chem. Res. 2021, 54, 1454.
 
175. Doping regulation in transition metal compounds for electrocatalysis
Zhang, A.; Liang, Y.; Zhang, H.; Geng, Z.* and Zeng, J.*
Chem. Soc. Rev. 2021, 50, 9817.
 
174. Pd-Pt tesseracts for oxygen reduction reaction
Chen, S.; Zhao, J.; Su, H.; Li, H.; Wang, H.; Hu, Z.; Bao, J.* and Zeng, J.*
J. Am. Chem. Soc. 2021, 143, 496.
 
173. Copper-based plasmonic catalysis: recent advances and future perspectives
Xin, Y.; Yu, K.; Zhang, L.; Yang, Y.; Yuan, H.; Li, H.; Wang, L.* and Zeng, J.*
Adv. Mater. 2021, 33, 2008145.
 
172. Bias-adaptable CO2-to-CO conversion via tuning the binding of competing intermediates
Liang, Y.; Zhao, J.; Zhang, H.; Zhang, A.; Wang, S.; Li, J.; Shakouri, M.; Xiao, Q.; Hu, Y.; Liu, Z.; Geng, Z.*; Li, F.* and Zeng, J.*
Nano Lett. 2021, 21, 20, 8924.
 
171. Electronic tuning of SnS2 nanosheets by hydrogen incorporation for efficient CO2 electroreduction
Zhang, A.; Liang, Y.; Li, H.; Wang, S.; Chang, Q.; Peng, K.; Geng, Z.* and Zeng, J.
Nano Lett. 2021, 21, 18, 7789.
 
170. In-situ generated high-valent iron single-atom catalyst for efficient oxygen evolution
Zhang, Z.; Feng, C.; Li, X.; Liu, C.; Wang, D.; Si, Rui.; Yang, J.; Zhou, S.* and Zeng, J.*
Nano Lett. 2021, 21, 11, 4795.
 
169. Co-based molecular catalysts for efficient CO2 reduction via regulating spin states
Kong, X.; Ke, J.; Wang, Z.; Liu, Y.; Wang, Y.; Zhou, W.; Yang, Z.; Yan, W.; Geng, Z.* and Zeng, J.*
Appl. Catal. B: Environ. 2021, 290, 120067.
 
168. A phosphate-derived bismuth catalyst with abundant grain boundaries for efficient reduction of CO2 to HCOOH
Xing, Y.; Chen, H.; Liu, Y.; Sheng, Y.; Zeng, J.; Geng, Z.* and Bao, J.*
Chem. Commun. 2021, 57, 1502.
 
167. Inductive effect as a universal concept to design efficient catalysts for CO2 electrochemical reduction: electronegativity difference makes a difference
Chen, H.; Fu, W.; Geng, Z.; Zeng, J.* and Yang, B.*
J. Mater. Chem. A 2021, 9, 4626.
 
166. Synthesis of tunable syngas on cobalt-based catalysts towards carbon dioxide reduction
Huang, M.; Kong, X.; Wang, C.; Geng, Z.; Zeng, J.* and Bao, J.*
ChemNanoMat 2021, 7, 2.
 
165. Enhance the activity of multi-carbon products for Cu via P doping
Kong, X.; Wang, C.; Zheng, H.; Geng, Z.*; Bao, J.* and Zeng, J.*
Sci. China Chem. 2021, 7, 1096.
 
164. A theory-guided X-ray absorption spectroscopy approach for identifying active sites in atomically dispersed transition-metal catalysts
Chen, Y.; Rana, R.; Sours, T; Vila, F. D.; Cao, S.; Blum, T.; Hong, J.; Hoffman, A. S.; Fang, C.-Y.; Huang, Z.; Shang, C.; Wang, C.; Zeng, J.; Chi, M.; Kronawitter, C. X.*; Bare, S. R.*; Gates, B. C.*, and Kulkarni, A. R.*
J. Am. Chem. Soc. 2021, 143, 48, 20144.
 
163. Glutathionylation-dependent proteasomal degradation of wide-spectrum mutant p53 proteins by engineered zeolitic imidazolate framework-8
Zhang, Y.*; Huang, X.; Wang, L.; Cao, C.; Zhang, H.; Wei, P.; Ding, H.; Song, Y.; Chen, Z.; Qian, J.; Zhong, S.; Liu, Z.; Wang, M.; Zhang, W.; Jiang, W.; Zeng, J.; Yao, G.* and Wen, L.*
Biomaterials 2021, 271, 120720.
 
162. Probing the nickel corrosion phenomena in alkaline electrolyte using tender x-ray ambient pressure x-ray photoelectron spectroscopy
Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J. and Crumlin, E. J.*
J. Phys. D: Appl. Phys.  2021, 374001.
 

2020

161. Electrochemical deposition as a universal route for fabricating single-atom catalysts
Zhang, Z.; Feng, C.; Liu, C.; Zuo, M.; Qin, L.; Yan, X.; Xing, Y.; Li, H.; Si, R.; Zhou, S.* and Zeng, J.*
Nature Commun. 2020, 11, 1215.
 
160. Advanced electrocatalysts with single-metal-atom active sites
Wang, Y.; Su, H.; He, Y.; Li, L.; Zhu, S.; Shen, H.; Xie, P.; Fu, X.; Zhou, G.; Feng, C.; Zhao, D.; Xiao, F.; Zhu, X.; Zeng, Y.; Shao, M.*; Chen, S.*; Wu, G.*; Zeng, J.* and Wang, C.*
Chem. Rev. 2020, 120, 12217.
 
159. Single atom of iron on MoS2 nanosheets for N2 electroreduction into ammonia
Su, H.; Chen, L.; Chen, Y.; Si, R.; Wu, Y.; Wu, X.; Geng, Z.*; Zhang, W.* and Zeng, J.*
Angew. Chem. Int. Ed. 2020, 59, 20411.
 
158. Surface iron species in a palladium-iron intermetallic promote and stabilize CO2 methanation
Luo, L.; Wang, M.; Cui, Y.; Chen, Z.; Wu, J.; Cao, Y.; Luo, J.; Dai, Y.; Li, W.-X.; Bao, J.* and Zeng, J.*
Angew. Chem. Int. Ed. 2020, 59, 14434.
 
157. A highly efficient metal-free electrocatalyst of F-doped porous carbon toward N2 electroreduction
Liu, Y.; Li, Q.; Guo, X.; Kong, X.; Ke, J.; Chi, M.; Li, Q.; Geng, Z.* and Zeng, J.*
Adv. Mater. 2020, 32, 1907690.
 
156. In-Situ surface reconstruction of InN nanosheets for efficient CO2 electroreduction into formate
Zhang, A.; Liang, Y.; Li, H.; Zhang, B.; Liu, Z.; Chang, Q.; Zhang, H.; Zhu, C.; Geng, Z.*; Zhu, W.* and Zeng, J.*
Nano Lett. 2020, 20, 8229.
 
155. Dimensionality control of electrocatalytic activity in perovskite nickelates
Cao, C.; Shang, C.; Li, X.; Wang, Y.; Liu, C.; Wang, X.; Zhou, S.* and Zeng, J.*
Nano Lett. 2020, 20, 2837.
 
154. Atomic-level construction of tensile-strained PdFe alloy surface toward highly efficient oxygen reduction electrocatalysis
Li, X.; Li, X.; Liu, C.; Huang, H.*; Gao, P.; Ahmad, F.; Luo, L.; Ye, Y.; Geng, Z.; Wang, G.; Si, R.; Ma, C.*; Yang, J. and Zeng, J.*
Nano Lett. 2020, 20, 1403.
 
153. Bi@Sn core-shell structure with compressive strain boosts the electroreduction of CO2 into formic acid
Xing, Y.; Kong, X.; Guo, X.; Liu, Y.; Li, Q.; Zhang, Y.; Sheng, Y.; Yang, X.; Geng, Z.* and Zeng, J.*
Adv. Sci. 2020, 7, 1902989.
 
152. Enhanced N2 electroreduction over LaCoO3 by introducing oxygen vacancies
Liu, Y.; Kong, X.; Guo, X.; Li, Q.; Ke, J.; Wang, R.; Li, Q.; Geng, Z.* and Zeng, J.*
ACS Catal. 2020, 10, 1077.
 
151. Coordinate activation in heterogeneous carbon dioxide reduction on Co-based molecular catalysts
Kong, X.; Liu, Y.; Li, P.; Ke, J.; Liu, Z.; Ahmad, F.; Yan, W.; Li, Z.; Geng, Z.* and Zeng, J.*
Appl. Catal. B: Environ. 2020, 268, 118452.
 
150. Atomic-level insights into strain effect on p-nitrophenol reduction via Au@Pd core-shell nanocubes as an ideal platform
Cui, Y.; Ma, K.; Chen, Z.; Yang, J.; Geng, Z.* and Zeng, J.*
J. Catal. 2020, 381, 427.
 
149. Tuning the coordination number of Fe single atoms for the efficient reduction of CO2
Chen, H.; Guo, X.; Kong, X.; Xing, Y.; Liu, Y.; Yu, B.; Li, Q.; Geng, Z.*; Si, R.* and Zeng, J.*
Green Chem. 2020, 22, 7529.
 
148. Boost selectivity of HCOO- using anchored Bi single atoms towards CO2 Reduction
Yang, X.; Cheng, Y.; Qin, L.; Wu, X.; Wu, Y.; Yan, T.; Geng, Z.* and Zeng, J.*
ChemSusChem 2020, 13, 6307.
 
147. Ultra-sensitive and selective detection of arsenic(III) via electroanalysis over cobalt single-atom catalysts
Li, P.-H.; Yang, M.*; Li, Y.-X.; Song, Z.-Y.; Liu, J.; Lin, C.-H.*; Zeng, J.* and Huang, X.*
Anal. Chem. 2020, 92, 6128.
 
146. The midas touch on copper into palladium
Zeng, J.*
Sci. China Chem. 2020, 63, 1740.
 
145. Constructing subtle grain boundaries on Au sheets for enhanced CO2  photoreduction
Li, X.; Zheng, T.; Zhang, L.; Zhao, S.; Chen, Y.; Wei, M.; Shang, C.; Bao, J.* and Zeng, J.*
Sci. China Chem. 2020, 63, 1705.
 
144. Oscillation of work function during reducible metal oxide catalysis and correlation with the activity property
Pan, Y.; Shen, X.; Holly, M. A.; Yao, L.; Wu, D.; Bentalib, A.; Yang, J.; Zeng, J.* and Peng, Z.*
ChemCatChem 2020, 12, 85.
 
143. Quantitative insights into non-uniform plasmonic hotspots due to symmetry breaking induced by oblique incidence
Zhou, Y.*; Li, H.; Zhang, G.; Wei, D.; Zhang, L.; Meng, Y.; Zheng, X.; Ma, Z.*; Zeng, J.* and Yang, X.
Phys. Chem. Chem. Phys. 2020, 22, 19932.
 
142. Molecular modification of single cobalt sites boosts the catalytic activity of CO2 electroreduction into CO
Zhong, Y.; Kong, X.; Geng, Z.; Zeng, J.*; Luo, X.* and Zhang, L.
ChemPhysChem 2020, 21, 2051.
 
141. Probing the surface chemistry for Reverse Water Gas Shift Reaction on Pt(111) using Ambient Pressure X-ray Photoelectron Spectroscopy
Su, H.; Ye, Y.; Lee, K.-J.; Zeng, J.; Mun, B. S. and Crumlin, E. J.*
J. Catal. 2020, 391, 123.
 

2019

140. Optimizing reaction paths for methanol synthesis from CO2 hydrogenation via metal-ligand cooperativity
Chen, Y.; Li, H.; Zhao, W.; Zhang, W.; Li, J.; Li, W.; Zheng, X.; Yan, W.; Zhang, W.; Zhu, J.; Si, R.* and Zeng, J.*
Nature Commun. 2019, 10, 1885.
 
139. Intercalated iridium diselenide electrocatalysts for efficient pH-universal water splitting
Zheng, T.; Shang, C.; He, Z.; Wang, X.; Cao, C.; Li, H.; Si, R.; Pan, B.; Zhou, S.* and Zeng, J.*
Angew. Chem. Int. Ed. 2019, 58, 14764.
 
138. Electron correlations engineer catalytic activity of pyrochlore iridates for acidic water oxidation
Shang, C.; Cao, C.; Yu, D.; Yan, Y.; Lin, Y.; Li, H.; Zheng, T.; Yan, X.; Yu, W.; Zhou, S.* and Zeng, J.*
Adv. Mater. 2019, 31, 1805104.
 
137. Harmonizing the electronic structures of the adsorbate and catalysts for efficient CO2 reduction
Zhang, A.; Liang, Y.; Li, H.; Zhao, X.; Chen, Y.; Zhang, B.; Zhu, W. and Zeng, J.*
Nano Lett. 2019, 19, 6547.
 
136. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide
Zhang, Z.; Ahmad, F.; Zhao, W.; Yan, W.; Zhang, W.*; Huang, H.*; Ma, C. and Zeng, J.*
Nano Lett. 2019, 19, 4029.
 
135. Breaking the local symmetry of LiCoO2 via atomic doping for efficient oxygen evolution
Zhang, Z.; Liu, C.; Feng, C.; Gao, P.; Liu, Y.; Ren, F.; Zhu, Y.; Cao, C.; Yan, W.; Si, R.; Zhou, S.* and Zeng, J.*
Nano Lett. 2019, 19, 8774.
 
134. Static regulation and dynamic evolution of single-atom catalysts in thermal catalytic reactions
Li, H.; Wang, M.; Luo, L. and Zeng, J.*
Adv. Sci. 2019, 6, 1801471.
 
133. High-index facets of Pt-Fe nanowires induce steric effect on selective hydrogenation of acetophenone
Wu, W.; Li, J.; Chen, Z.; Chen, W.; Pang, H.; Ma, K. and Zeng, J.*
J. Catal. 2019, 373, 209.
 
132. Rh doping in Pd nanocubes optimizes the adsorption of 3-nitrostyrene towards selective hydrogenation of vinyl group
Wu, W.; Zhao, S.; Cui, Y. E.; Chen, W.; Liu, Y.; Wang, H.; Li, J.; Li, Z.* and Zeng, J.*
ChemCatChem 2019, 11, 2793.
 
131. Competitive transient electrostatic adsorption for in situ regeneration of poisoned catalyst
Pan, Y.; Shen, X.; Yao, L.; Bentalib, A.; Yang, J.; Zeng, J.* and Peng, Z.*
ChemCatChem 2019, 11, 1179.
 
130. Engineering electronic structures of nanomaterials toward carbon dioxide electroreduction
Geng, Z.; Kong, X.; Li, Q.; Ke, J. and Zeng, J.*
Curr. Opin. Electrochem. 2019, 17, 7. (invited review article).
 
129. Large-scale and highly selective CO2 electrocatalytic reduction on nickel single-atom catalyst
Zheng, T.; Jiang, K.; Ta, N.; Hu, Y.; Zeng, J.; Liu, J. and Wang, H.*
Joule 2019, 3, 265.
 
128. Tuning electronic structure and lattice diffusion barrier of ternary Pt-In-Ni for both improved activity and stability properties in oxygen reduction electrocatalysis
Shen, X.; Dai, S.; Pan, Y.; Yao, L.; Yang, J.; Pan, X.; Zeng, J. and Peng, Z.*
ACS Catal. 2019, 9, 11431.
 
127. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media
Chen, S.; Zhang, N.; Narváez Villarrubia, C. W.; Huang, X.; Xie, L.; Wang, X.; Kong, X.; Xu, H.; Wu, G.; Zeng, J. and Wang, H.-L.*
Nano Energy 2019, 66, 104164.
 

2018

126. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation
Li, H.; Wang, L.; Dai, Y.; Pu, Z.; Lao, Z.; Chen, Y.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.*; Si, R.; Ma, C. and Zeng, J.*
Nature Nanotechnol. 2018, 13, 411.
 
125. Harnessing copper-palladium alloy tetrapod nanoparticle-induced pro-survival autophagy for optimized photothermal therapy of drug-resistant cancer
Zhang, Y.; Sha, R.; Zhang, L.; Zhang, W.; Jin, P.; Xu, W.; Ding, J.; Lin, J.; Qian, J.; Yao, G.; Zhang, R.; Luo, F.; Zeng, J.*; Cao, J.* and Wen, L.-P.*
Nature Commun. 2018, 9, 4236.
 
124. Molecular-level insight into how hydroxyl groups boost catalytic activity in CO2 hydrogenation into methanol
Peng, Y.; Wang, L.; Luo, Q.; Cao, Y.; Dai, Y.; Li, Z.; Li, H.; Zheng, X.; Yan, W.; Yang, J.* and Zeng, J.*
Chem 2018, 4, 613.
 
123. One-nanometer-thick PtNiRh trimetallic nanowires with enhanced oxygen reduction electrocatalysis in acid media: Integrating multiple advantages into one catalyst
Li, K.; Li, X.; Huang, H.*; Luo, L.; Li, X.; Yan, X.; Ma, C.; Si, R.; Yang, J. and Zeng, J.*
J. Am. Chem. Soc. 2018, 140, 16159.
 
122. Nickel doping in atomically thin tin disulfide nanosheets enables highly efficient CO2 reduction
Zhang, A.; He, R.; Li, H.; Chen, Y.; Kong, T.; Li, K.; Ju, H.; Zhu, J.; Zhu, W. and Zeng, J.*
Angew. Chem. Int. Ed. 2018, 57, 10954.
 
121. Oxygen Vacancies in ZnO nanosheets enhance CO2 electrochemical reduction to CO
Geng, Z.; Kong, X.; Chen, W.; Su, H.; Liu, Y.; Cai, F.; Wang, G.* and Zeng, J.*
Angew. Chem. Int. Ed. 2018, 57, 6054.
 
120. Achieving a record-high yield rate of 120.9 µgNH3 mgcat.-1 h-1 for N2 electrochemical reduction over Ru single-atom catalysts
Geng, Z.; Liu, Y.; Kong, X.; Li, P.; Li, K.; Liu, Z.; Du, J.; Shu, M.; Si, R.* and Zeng, J.*
Adv. Mater. 2018, 30, 1803498.
 
119. Achieving the widest range of syngas proportions at high current density over cadmium sulfoselenide nanorods in CO2 electroreduction
He, R.; Zhang, A.; Ding, Y.; Kong, T.; Xiao, Q.; Li, H.; Liu, Y. and Zeng, J.*
Adv. Mater. 2018, 30, 1705872.
 
118. Pt single atoms embedded in the surface of Ni nanocrystals as highly active catalysts for selective hydrogenation of nitro compounds
Peng, Y.; Geng, Z.; Zhao, S.; Wang, L.; Li, H.; Wang, X.; Zheng, X.; Zhu, J.; Li, Z.*; Si, R.* and Zeng, J.*
Nano Lett. 2018, 18, 3785.
 
117. Computation-guided development of platinum alloy catalyst for carbon monoxide preferential oxidation
Pan, Y.; Hwang, S. Y.; Shen, X.; Yang, J.; Zeng, J.*; Wu, M.* and Peng, Z.*
ACS Catal. 2018, 8, 5777.
 
116. Electrical and structural engineering of cobalt selenide nanosheets by Mn modulation for efficient oxygen evolution
Zhao, X.; Li, X.; Yan, Y.; Xing, Y.; Lu, S.; Zhao, L.; Zhou, S.; Peng, Z.* and Zeng, J.*
Appl. Catal. B: Environ. 2018, 236, 569.
 
115. Phosphorus-modulated cobalt selenides enable engineered reconstruction of active layers for efficient oxygen evolution
Zhao, X.; Xing, Y.; Zhao, L.; Lu, S.; Ahmad, F. and Zeng, J.*
J. Catal. 2018, 368, 155.
 
114. Nanoimaging of electronic heterogeneity in Bi2Se3 and Sb2Te3 nanocrystals
Lu, X.; Khatib, O.; Du, X.; Duan, J.; Wei, W.; Liu, X.; Bechtel, H.; D’Apuzzo, F.; Yan, M.; Buyanin, A.; Fu, Q.; Chen, J.; Salmeron, M.; Zeng, J.*; Raschke, M.*; Jiang, P.* and Bao, X.*
Adv. Elect. Mater. 2018, 4, 1700377.
 
113. Copper-palladium tetrapods with sharp tips as a superior catalyst for oxygen reduction reaction
Zhang, L.; Chen, S.; Dai, Y.; Shen, Z.; Wei, M.; Huang, R.; Li, H.; Zheng, T.; Zhang, Y.; Zhou, S.* and Zeng, J.*
ChemCatChem 2018, 10, 925.
 
112. Introduction of carbon-boron atomic groups as an efficient strategy to boost formic acid production toward CO2 electrochemical reduction
Cao, Y.; Geng, Z.; Chen, W.; Cai, F.; Wang, G.*; Wang, Z. and Zeng, J.*
Chem. Commun. 2018, 54, 3367.
 
111. Rh-based nanocatalysts for heterogeneous reactions
Luo, L.; Li, H.; Peng, Y.; Feng, C. and Zeng, J.*
ChemNanoMat 2018, 4, 451.
 
110. Boosting fuel cell catalysis by surface doping of W on Pd nanocubes
Ahmad, F.; Luo, L.; Li, X.; Huang, H.* and Zeng, J.*
Chin. J. Catal. 2018, 39, 1202.
 
109. Size-controlled biocompatible silver nanoplates for contrast-enhanced intravital photoacoustic mapping of tumor vasculature.
Wang, X.; Zhang, L.; Wang, J.; Liu, X.; Lv, P.; Zeng, J.* and Liu, G.*
J. Biomed. Nanotechnol. 2018, 14, 1448.
 

2017

108. Incorporating nitrogen atoms into cobalt nanosheets as a strategy to boost catalytic activity toward CO2 hydrogenation
Wang, L.; Zhang, W.; Zheng, X.; Chen, Y.; Wu, W.; Qiu, J.; Zhao, X.; Zhao, X.; Dai, Y. and Zeng, J.*
Nature Energy 2017, 2, 869.
 
107. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires
Huang, H.; Li, K.; Chen, Z.; Luo, L.; Gu, Y.; Zhang, D.; Ma, C.; Si, R.*; Yang, J.; Peng, Z.* and Zeng, J.*
J. Am. Chem. Soc. 2017, 139, 8152.
 
106. Supported rhodium catalysts for ammonia-borane hydrolysis: dependence of the catalytic activity on the highest occupied state of the single rhodium atoms
Wang, L.; Li, H.; Zhang, W.; Zhao, X.; Qiu, J.; Li, A.; Zheng, X.; Hu, Z.*; Si, R.* and Zeng, J.*
Angew. Chem. Int. Ed. 2017, 56, 4712.
 
105. Understanding of strain effect in electrochemical reduction of CO2: using Pd nanostructures as an ideal platform
Huang, H.; Jia, H.; Liu, Z.;Gao, P.; Zhao, J.; Luo, Z.; Yang, J.* and Zeng, J.*
Angew. Chem. Int. Ed. 2017, 56, 3594.
 
104. Engineering the electrical conductivity of lamellar silver-doped cobalt(II) selenide nanobelts for enhanced oxygen evolution
Zhao, X.; Zhang, H.; Yan, Y.; Cao, J.; Li, X.; Zhou, S.; Peng, Z.* and Zeng, J.*
Angew. Chem. Int. Ed. 2017, 56, 328.
 
103. Conductive tungsten oxide nanosheets for highly efficient hydrogen evolution
Zheng, T.; Sang, W.; He, Z.; Wei, Q.; Chen, B.; Li, H.; Cao, C.; Huang, R.; Yang, X.; Pan, B.; Zhou, S.* and Zeng, J.*
Nano Lett. 2017, 17, 7968.
 
102. Molybdenum disulfide-black phosphorus hybrid nanosheets as a superior catalyst for electrochemical hydrogen evolution
He, R.; Hua, J.; Zhang, A.; Wang, C.; Peng, J.; Chen, W. and Zeng, J.*
Nano Lett. 2017, 17, 4311.
 
101. Integration of quantum confinement and alloy effect to modulate electronic properties of RhW nanocrystals for improved catalytic performance toward CO2 hydrogenation
Zhang, W.; Wang, L.; Liu, H.; Hao, Y.; Li, H.; Khan, M. U. and Zeng, J.*
Nano Lett. 2017, 17, 788.
 
100. Single-molecule nanocatalysis reveals facet-dependent catalytic kinetics and dynamics of pallidium nanoparticles
Chen, T.; Chen, S.; Song, P.; Zhang, Y.; Su, H.; Xu, W.* and Zeng, J.*
ACS Catal. 2017, 7, 2967-.
 
99. Integration of photothermal effect and heat insulation to efficiently reduce reaction temperature of CO2 Hydrogenation
Zhang, W.; Wang, L.; Wang, K.; Khan, M.; Wang, M.; Li, H. and Zeng, J.*
Small 2017, 13, 1602583.
 
98. Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution
Huang, R.; Sun, Z.; Chen, S.; Wu, S.; Shen, Z.; Wu, X.* and Zeng, J.*
Chem. Commun. 2017, 53, 6922.
 
97. More accurate depiction of adsorption energy on transition metals using work function as one additional descriptor
Shen, X.; Pan, Y.; Liu, B.; Yang, J.; Zeng, J.* and Peng, Z.*
Phys. Chem. Chem. Phys. 2017, 19, 12628.
 
96. Atomically thin cesium lead bromide perovskite quantum wires with high luminescence
Huang, H.; Liu, M.; Li, J.; Luo, L.; Zhao, J.; Luo, Z.; Wang, X.*; Ye, Z.; He, H.* and Zeng, J.*
Nanoscale 2017, 9, 104.
  
95. Gold atom-decorated CoSe2 nanobelts with engineered active sites for enhanced oxygen evolution
Zhao, X.; Gao, P.; Yan, Y.; Li, X.; Xing, Y.; Li, H.; Peng, Z.*; Yang, J. and Zeng, J.*
J. Mater. Chem. A 2017, 5, 20202.
 
94. 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets
Li, J.; Luo, L.; Huang, H.; Ma, C.; Ye, Z.; Zeng, J.* and He, H.*
J. Phys. Chem. Lett. 2017, 8, 1161.
 
93. Precisely controlled synthesis of Pt-Pd octahedral nanoframes as a superior catalyst towards oxygen reduction reaction
Ye, C.; Huang, H. and Zeng, J.*
Chin. J. Chem. Phys. 2017, 30, 581.
 
92. High performance platinum single atom electrocatalyst for oxygen reduction reaction
Liu, J.; Jiao, M.; Lu, L.; Barkholtz, H.; Li, Y.; Wang, Y.; Jiang, L.; Wu, Z.; Liu, D; Zhuang, L.; Ma, C.; Zeng, J.; Zhang, B.; Su, D.; Song, P.; Xing, W.; Xu, W.*; Wang, Y.*; Jiang, Z.* and Sun, G.*
Nature Commun. 2017, 8, 15938.
 
91. Catalytically active ceria-supported cobalt-manganese oxide nanocatalysts for oxidation of carbon monoxide
Wang, X.; Du, L.; Du, M.; Ma, C.*; Zeng, J.; Jia, C.* and Si, R.*
Phys. Chem. Chem. Phys. 2017, 19, 14533.
 
90. Synthesis and metal-support interaction of subnanometer copper-palladium bimetallic oxide clusters for catalytic oxidation of carbon monoxide
Du, P.; Hu, X.; Wang, X.; Ma, C.*; Du, M.; Zeng, J.; Jia, C.*; Huang, Y. and Si, R.*
Inorg. Chem. Front. 2017, 4, 668.
 
89. Plasmon-modulated excitation-dependent fluorescence from activated CTAB molecules strongly coupled to gold nanoparticles
Ding, S.; Nan, F.; Liu, X.; Hao, Z.; Zhou, L.; Zeng, J.; Xu, H.; Zhang, W. * and Wang, Q. *
Sci. Rep. 2017, 7, 43282.
 

2016

88. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst
Wang, L.; Zhang, W.; Wang, S.; Gao, Z.; Luo, Z.; Wang, X.; Zeng, R.; Li, A.; Li, H.; Wang, M.; Zheng, X.; Zhu, J.; Zhang, W.*; Ma, C.*; Si, R. and Zeng, J.*
Nature Commun. 2016, 7, 14036.
 
87. Engineering electrocatalytic activity in nanosized perovskite cobaltite through surface spin-state transition
Zhou, S.*; Miao, X.; Zhao, X.; Ma, C.; Qiu, Y.; Hu, Z.*; Zhao, J.; Shi, L. and Zeng, J.*
Nature Commun. 2016, 7, 11510.
 
86. Pt3Co octapods as superior catalysts of CO2 hydrogenation
Khan, M. U.; Wang, L.; Liu, Z.; Gao, Z.; Wang, S.; Li, H.; Zhang, W.; Wang, M.; Wang, Z.*; Ma, C. and Zeng, J.*
Angew. Chem. Int. Ed. 2016, 55, 9548.
 
85. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals
Chen, T.; Chen, S.; Zhang, Y.; Qi, Y.; Zhao, Y.; Xu, W.* and Zeng, J.*
Angew. Chem. Int. Ed. 2016, 55, 1839.
 
84. Integration of kinetic control and lattice mismatch to synthesize Pd@AuCu core-shell planar tetrapods with size-dependent optical properties
Meng, M.; Fang, Z.; Zhang, C.; Su, H.; He, R.; Zhang, R.; Li, H.; Li, Z-Y; Wu, X.; Ma, C.* and Zeng, J.*
Nano Lett. 2016, 16, 3036.
 
83. Ethylenediaminetetraacetic acid-assisted synthesis of Bi2Se3 nanostructures with unique edge sites
Liu, X.; Fang, Z.; Zhang, Q.; Huang, R.; Lin, L., Ye, C.; Ma, C.* and Zeng, J.*
Nano Res. 2016, 9, 2707.
 
82. Growth of metal-semiconductor core-multishell nanorods with optimized field confinement and nonlinear enhancement
Nan, F.; Xie, F.-M.; Liang, S.; Ma, L.; Yang, D.-J.; Liu, X.-L.; Wang, J.-H.; Cheng, Z.-Q.; Yu, X.-F.; Zhou, L.*; Wang, Q.-Q.* and Zeng, J.*
Nanoscale 2016, 8, 11969.
 
81. Comparative study of the structure, mechanical and thermomechanical properties of cellulose nanopapers with different thickness
Li, Q.; Chen, W.; Li, Y.; Guo, X.; Song, S.; Wang, W.; Liu, Y.; Li, J.; Yu H.* and Zeng, J.
Cellulose 2016, 23, 1375.
 
80. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation
Guo, L.-W.; Du, P.-P.; Fu, X.-P.; Ma, C.*; Zeng, J.; Si, R.*; Huang, Y.-Y.; Jia, C. J.*; Zhang, Y.-W. and Yan, C.-H.
Nature Commun. 2016, 7, 13481.
 
79. Effect of Screw-Dislocation on Electrical Properties of Spiral-Type Bi2Se3 Nanoplates
Wu, Y.; Zhuang, A.; Ye, C.; Zeng, J.; Pan, N. and Wang, X.*
ACS Catal. 2016, 6, 3072.
 
78. Structural determination of catalytically active subnanometer iron oxide clusters
Yang, Q.; Fu, X.-P.; Jia, C.-J.*; Ma, C.*; Wang, X.; Zeng, J; Si, R.*; Zhang, Y.-W. and Yan, C.-H.
Chinese J. Chem. Phys. 2016, 29, 687.
 

2015

77. Ratio-controlled synthesis of CuNi octahedra and nanocubes with enhanced catalytic activity
Wang, M.; Wang, L.; Li, H.; Du, W.; Khan, M. U.; Zhao, S.; Ma, C.; Li, Z. and Zeng, J.*
J. Am. Chem. Soc. 2015, 137, 14027.
 
76. Octahedral Pd@Pt1.8Ni core-shell nanocrystals with ultrathin PtNi alloy shells as active catalysts for oxygen reduction reaction
Zhao, X.; Chen, S.; Fang, Z.; Ding, J.; Sang, W.; Wang, Y.; Zhao, J.; Peng, Z.* and Zeng, J.*
J. Am. Chem. Soc. 2015, 137, 2804.
 
75. Size-controlled synthesis of platinum-copper hierarchical trigonal bipyramid nanoframes
Chen, S.; Su, H.; Wang, Y.; Wu, W and Zeng, J.*
Angew. Chem. Int. Ed. 2015, 54, 108.
 
74. Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals
Wang, L.; Zhao, S.; Liu, C.; Li, C.; Li, X.; Li, H.; Wang, Y.; Ma, C.; Li, Z.* and Zeng, J.*
Nano Lett. 2015, 15, 2875.
 
73. Rational design of metal nanoframes for catalysis and plasmonics
Fang, Z.; Wang, Y.; Liu, C.; Chen, S; Sang, W.; Wang, C.* and Zeng, J.*
Small 2015, 11, 2593. (invited review article).
 
72. One-pot synthesis of Bi2Se3 nanostructures with rationally tunable morphologies
Liu, X.; Xu, J.; Fang, Z.; Lin, L.; Qian, Y.; Wang, Y.; Ye, C.; Ma, C.* and Zeng, J.*
Nano Res. 2015, 8, 3612.
 
71. Concave Cu-Pd bimetallic nanocrystals: ligand-based co-reduction and mechanistic study
Zhang, L.; Su, H.; Sun, M.; Wang, Y.; Wu, W.; Yu, T.* and Zeng, J.*
Nano Res. 2015, 8, 2415.
 
70. Controlling the lateral and vertical dimensions of Bi2Se3 nanoplates via seeded growth
Zhuang, A.; Zhao, Y.; Liu, X.; Xu, M.; Wang, Y.; Jeong, U.*; Wang, X. and Zeng, J.*
Nano Res. 2015, 8, 246.
 
69. Au-Pd alloy octapods with high electrocatalytic activity for the oxidation of formic acid
Wang, L.-B.; Wang, Y.-C.; Guo, H.-Y.; Huang, J.-L.; Zhao, Y.-L.; Liu, Q.-Y.; Wu, X.* and Zeng, J.*
Part. Part. Syst. Charact. 2015, 32, 295.
 
68. Copper nanocrystal plane effect on stereoselectivity of catalytic deoxygenation of aromatic epoxides
Xiao, B.; Niu, Z.; Wang, Y.-G.; Jia, W.; Shang, J.; Zhang, L.; Wang, D.; Fu, Y.; Zeng, J.; He, W.; Li, J.; Yang, J.; Liu, L.* and Li, Y.*
J. Am. Chem. Soc. 2015, 137, 3791.
 
67. Direct observation of magnetic-Ion off-centering-induced ferroelectricity in multiferroic manganite Pr(Sr0.1Ca0.9)2Mn2O7
Ma, C.*; Lin, Y.; Yang, H.; Tian, H.; Shi, L.; Zeng, J. and Li, J.*
Adv. Mater. 2015, 27, 6328.
 
66. Synthesis of multishell nanoplates by consecutive epitaxial growth of Bi2Se3 and Bi2Te3 nanoplates and enhanced thermoelectric properties
Min, Y.; Park, G.; Kim, B.; Giri, A.; Zeng, J.; Roh, J.W.; Kim, S.I.; Lee, K.H.* and Jeong, U.*
ACS Nano 2015, 9, 6843.
 
65. Chloride-induced shape transformation of silver nanoparticles in a water environment
Zhang, L.; Li, X.; He, R.; Wu, L.; Zhang, L.* and Zeng, J.
Environ. Pollut. 2015, 204, 145.
 

2014

64. Facile synthesis of pentacle gold-copper alloy nanocrystals and their plasmonic and catalytic properties
He, R.; Wang, Y.-C; Wang, X.; Wen, X.; Wang, Z.; Liu, G.; Zhou, W.; Wen, L.; Li, Q.; Wang, X.; Chen, X.; Zeng, J.* and Hou, J.
Nature Commun. 2014, 5, 4327.
 
63. Screw-dislocation-driven bidirectional spiral growth of Bi2Se3 nanoplates
Zhuang, A.; Li, J.-J.; Wang, Y.-C.; Wen, X.; Lin, Y.; Xiang, B.; Wang, X. and Zeng, J.*
Angew. Chem. Int. Ed. 2014, 53, 6425.
 
62. One-step synthesis of hybrid nanocrystals with rational tuning of the morphology
Sang, W.; Zheng, T.; Wang, Y.; Li, X.; Zhao, X.; Zeng, J.* and Hou. J.
Nano Lett. 2014, 14, 6666.
 
61. Facile synthesis of Cu-Pd bimetallic mutipods for application in cyclohexane oxidation
Zhang, Z.-Q; Huang, J.; Zhang, L.; Sun, M.; Wang, Y.-C.; Lin, Y. and Zeng, J.*
Nanotechnology 2014, 25, 435602.
 
60. Comparative study of aerogels obtained from differently prepared nanocellulose fibers
Chen. W.; Li, Q.; Wang, Y.; Yi. X.; Zeng, J.*; Yu, H.*; Liu, Y. and Li, J.
ChemSusChem 2014, 7, 154.(highlighted on the cover).
 
59. Versatile graphene quantum dots with tunable nitrogen doping
Dai, Y.*; Long, H.; Wang, X.; Wang, Y.; Gu, Q.; Jiang, W.; Wang, Y.; Li, C.; Zeng, T. H.; Sun. Y. and Zeng, J.*
Part. Part. Syst. Charact. 2014, 31, 597.(highlighted on the cover).
 
58. Oxidative etching and its role in manipulating the nucleation and growth of noble-metal nanocrystals
Zheng, Y.; Zeng, J.; Ruditskiy, A.; Liu, M. and Xia, Y.*
Chem. Mater. 2014, 26, 23. (invited feature article, highlighted on the cover).
 

2013

57. A new nanobiocatalytic system based on allosteric effect with dramatically enhanced enzymatic performance
Wang, L.-B.; Wang, Y.-C.; He, R.; Zhuang, A.; Wang, X.; Zeng, J.* and Hou, J. G.
J. Am. Chem. Soc. 2013, 135, 1272-1275.
 
56. A plasmon-assisted optofluidic (PAOF) system for measuring the photothermal conversion efficiencies of gold nanostructures and controlling an electrical switch
Zeng, J.; Goldfeld, D. and Xia, Y.*
Angew. Chem. Int. Ed. 2013, 52, 4169-4173.(chosen as a "Hot Paper" by the editors).
 
55. Metal-semiconductor hybrid nanocrystals: controlled synthesis, plasmonic modulation and photoluminescence properties
Chen, S.; He, X.; He, R. and Zeng, J.*
Sci. China Chem. 2013, 43, 667-676.(invited review article).
 
54. Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores
Shao, M.*; He, G.; Peles, A.; Odell, J. H.; Zeng, J.; Su, D.; Tao, J.; Yu, T.; Zhu, Y. and Xia, Y.*
Chem. Comm. 2013, 49, 9030-9032.
 
53. Synthesis and characterization of pressure and temperature dual-responsive polystyrene microbeads
Zhu, C.; Deng, R.; Zeng, J.; Khalil, G. E.; Dabiri, D.; Gu, Z. and Xia, Y.*
Part. Part. Syst. Charact. 2013, 30, 542-548. (VIP article).
 
52. Seed-mediated synthesis of single-crystal gold nanospheres with controlled diameters in the range of 5-30 nm and their self-assembly upon dilution
Zheng, Y.; Ma, Y.; Zeng, J.; Zhong, X.; Jin, M.; Li, Z.-Y. and Xia, Y.*
Chem. Asian J. 2013, 8, 792-799. (VIP article, it was highlighted on the cover and in ChemistryViews.).
 
51. Aqueous-phase synthesis of single-crystal Pd seeds 3 nm in diameter and their use for the growth of Pd nanocrystals with different shapes
Zhu, C.; Zeng, J.; Lu, P.; Liu, J.; Gu, Z. and Xia, Y.*
Chem. Eur. J. 2013, 19, 5127-5133.
 
2012

50. Symmetric and asymmetric Au-AgCdSe hybrid nanorods
Liang, S.; Liu, X.-L.; Yang, Y.-Z.; Wang, Y.-L.; Wang, J.-H.; Yang, Z.-J.; Wang, L.-B.; Jia, S.-F.; Yu, X.-F.*; Zhou, L.; Wang, J.-B.; Zeng, J.*; Wang, Q.-Q.* and Zhang, Z.
Nano Lett. 2012, 12, 5281-5286.
 
49. Hybrid nanomaterials: not just a pretty flower
Zeng, J. and Xia, Y.*
Nature Nanotechnol. 2012, 7, 415.
 
48. Controlling the nucleation and growth of silver on palladium nanocubes by manipulating the reaction kinetics
Zeng, J.; Zhu, C.; Tao, J.; Jin, M.; Zhang, H.; Li, Z.-Y.; Zhu, Y. and Xia, Y.*
Angew. Chem. Int. Ed. 2012, 51, 2354-2358.(VIP article, highlighted on the back cover and in an accompanying article, as well as in C&EN News, 2011, December 19, p. 36).
 
47. Kinetically controlled overgrowth of Ag or Au on Pd nanocrystal seeds: from hybrid dimers to non-concentric and concentric bimetallic nanocrystals
Zhu, C.; Zeng, J. (equal contribution); Tao, J.; Zhu, Y.; Gu, Z. and Xia, Y.*
J. Am. Chem. Soc. 2012, 134, 15822-15831.
 
46. Quantitative analysis of the role played by poly(vinyl pyrrolidone) in seed-mediated growth of Ag nanocrystals
Xia, X.; Zeng, J. (equal contribution); Oetjen L.; Li, Q. and Xia, Y.*
J. Am. Chem. Soc. 2012, 134, 1793-1801.
 
45. Ternary graphene-TiO2-Fe3O4 nanocomposite as a re-collectable photocatalyst with enhanced durability
Lin, Y.; Geng, Z.; Cai, H.; Ma, L.; Chen, J.; Zeng, J.*; Pan, N. and Wang, X.*
Eur. J. Inorg. Chem. 2012, 28, 4439-4444.
 
44. Controlling the evolution of cubic Ag seeds into nanocrystals with different morphologies
Zeng, J.; Xia, X.; Zhang, Q.; Wang, Y. and Xia, Y.*
Sci. China Chem. 2012, 42, 1505-1512 (invited review article).
 
43. Facile synthesis of gold wavy nanowires and investigation of their growth mechanism
Zhu, C.; Peng, H.-C.; Zeng, J.; Liu, J.; Gu, Z. and Xia, Y.*
J. Am. Chem. Soc. 2012, 134, 20234-20237.
 
42. Recent developments in shape-controlled synthesis of silver nanocrystals
Xia, X.; Zeng, J.; Zhang, Q.; Moran, C. M. and Xia, Y.*
J. Phys. Chem. C 2012, 116, 21647-21656.(invited feature article, highlighted on the cover).
 
41. A Mechanistic study on the nucleation and growth of Au on Pd seeds with a cubic or octahedral shape
He, G.; Zeng, J.; Jin, M.; Zhang, H.; Lu, N.; Wang, J.; Kim, M. J. and Xia, Y.*
ChemCatChem 2012, 4, 1668-1674.(invited article, highlighted on the cover).
 
40. Controlling the size and morphology of Au@Pd core-shell nanocrystals by manipulating the kinetics of seeded growth
Li, J.; Zheng, Y.; Zeng, J. and Xia, Y.*
Chem. Eur. J. 2012, 18, 8150-8156.
 
39. Controlled growth and magnetic properties of α-Fe2O3 nanocrystals: Octahedra, cuboctahedra and truncated cubes
Wang, L. B.; Song, L. X.*; Dang, Z.; Chen, J.; Yang, J. and Zeng, J.
CrystEngComm 2012, 14, 3355-3358.
 
38. Charge transfer and retention in directly coupled Au-CdSe nanohybrids
Gao, B.; Lin, Y.; Wei, S.; Zeng, J.; Liao, Y.; Chen, L.; Goldfeld, D.; Wang, X.; Luo, Y.; Dong, Z.* and Hou, J.*
Nano Res. 2012, 5, 88-98.
 

2011

37. Successive deposition of Ag on Ag nanoplates: lateral versus vertical growth
Zeng, J.; Xia, X. (equal contribution); Rycenga, M.; Henneghan, P.; Li, Q. and Xia, Y.*
Angew. Chem. Int. Ed. 2011, 50, 244-249. (VIP article, it was highlighted on the frontispieces and in an accompanying article published in the same journal, 2011, 50, 992-993).
 
36. Silver nanocrystals with concave surfaces and their optical and surface-enhanced Raman scattering properties
Xia, X.; Zeng, J. (equal contribution); McDearmon, B.; Zheng, Y.; Li, Q. and Xia, Y.*
Angew. Chem. Int. Ed. 2011, 50, 12542.(VIP article, highlighted on the inside cover).
 
35. Selective sulfuration at the corner sites of a silver nanocrystal and its use in stabilization of the shape
Zeng, J.; Tao, J.; Su, D.; Qin, D. and Xia, Y.*
Nano Lett. 2011, 11, 3010-3015.
 
34. On-chip screening of experimental conditions for the synthesis of noble-metal nanostructures with different morphologies
Zhou, J.; Zeng, J. (equal contribution); Grant, J.; Wu, H. and Xia, Y.*
Small 2011, 7, 3308-3316. (VIP article, it was highlighted on the cover and in Materials View).
 
33. A mechanistic study on the formation of silver nanoplates in the presence of silver seeds and citric acid or citrate ions
Zeng, J.; Tao, J.; Li, W.; Grant, J.; Wang, P.; Zhu, Y. and Xia, Y.*
Chem. Asian J. 2011, 6, 376-379.
 
32. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications
Rycenga, M.; Cobley, C. M.; Zeng, J.; Li, W.; Moran, C.; Zhang, Q.; Qin, D. and Xia, Y.*
Chem. Rev. 2011, 111, 3669-3712. (invited review article).
 
31. Chemical transformations of nanostructured materials
Moon, G. D.; Ko, S.; Min, Y.; Zeng, J.; Xia, Y. and Jeong, U.*
Nano Today 2011, 6, 186-203. (invited review article).
 
30. Shape-controlled synthesis of copper nanocrystals in an aqueous solution with glucose as a reducing agent and hexadecylamine as a capping agent
Jin, M.; He, G.; Zhang, H.; Zeng, J.; Xie, Z. and Xia, Y.*
Angew. Chem. Int. Ed. 2011, 50, 10560-10564.
 
29. Controlling the morphology of rhodium nanocrystals by manipulating the growth kinetics with a syringe pump
Zhang, H.; Li, W.; Jin, M.; Zeng, J.; Yu, T.; Yang, D. and Xia, Y.*
Nano Lett. 2011, 11, 898-903.
 
28. Facile synthesis of gold nanorice enclosed by high-index facets and its application for CO oxidation
Zheng, Y.; Tao, J.; Liu, H.; Zeng, J.; Yu, T.; Ma, Y.; Wu, L.; Zhu, Y.; Liu, J. and Xia, Y.*
Small 2011, 7, 2307-2312.
 
27. Nanocables composed of anatase nanofibers wrapped in UV-light reduced graphene oxide and their enhancement of photoinduced electron transfer in photoanodes
Dai, Y.; Jing, Y.; Zeng, J.; Qi, Q.; Wang, C.; Goldfeld, D.; Xu, C.; Zheng, Y. and Sun, Y.*
J. Mater. Chem. 2011, 21, 18174-18179.
 
26. Synthesis and anti-fake function design of multiple luminescent CdxZn1-xSe quantum dots
Bai, X.-L.*; Du, J.-Y.; Zeng, J.; Wu, B.; Yu, X.-D. and Fang, L.-H.
Chem. J. Chinese U. 2011, 32, 1261-1265.
 
2010

25. Gold-based hybrid nanocrystals through heterogeneous nucleation and growth
Zeng, J.*; Huang, J.; Liu, C.; Wu, C.; Lin, Y.; Wang, X.*; Zhang, S.; Hou, J. G.* and Xia, Y.
Adv. Mater. 2010, 22, 1936-1940.(highlighted on the inside cover).
 
24. Controlling the shapes of silver nanocrystals with different capping agents
Zeng, J.; Zheng, Y.; Rycenga, M.; Tao, J.; Li, Z.-Y.; Zhang, Q.; Zhu, Y. and Xia, Y.*
J. Am. Chem. Soc. 2010, 132, 8552-8553.
 
23. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles
Zeng, J.; Zhang, Q.; Chen, J. and Xia, Y.*
Nano Lett. 2010, 10, 30-35.
 
22. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties
Yu, T.; Zeng, J. (equal contribution); Lim, B. and Xia, Y.*
Adv. Mater. 2010, 22, 5188-5192.
 
21. Facile synthesis of bimetallic Ag/Ni core/sheath nanowires and their magnetic and electrical properties
McKiernan, M.; Zeng, J.*; Ferdous, S.; Verhaverbeke, S.; Leschkies, K. S.; Gouk, R.; Lazik, C.; Jin, M.; Briseno, A. L. and Xia, Y.*
Small 2010, 6, 1927-1934.
 
20. Nanocrystal-based time-temperature indicators
Zeng, J.; Roberts, S. and Xia, Y.*
Chem. Eur. J. 2010, 16, 12559-12563.(Highlighted on the cover).
 
19. AuI: An alternative and potentially better precursor than AuIII for the synthesis of Au nanostructures
Zeng, J.; Ma, Y.; Jeong, U. and Xia, Y.*
J. Mater. Chem. 2010, 20, 2290-2301. (invited feature article).
 
18. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties
Zhang, Q.; Li, W.; Moran, C.; Zeng, J.; Chen, J.; Wen, L. and Xia, Y.*
J. Am. Chem. Soc. 2010, 132, 11372-11378.
 
17. Facile synthesis of five-fold twinned, starfish-like Rhodium nanocrystals by eliminating oxidative etching with a chloride-free precursor
Zhang, H.*; Xia, X.; Li, W.; Zeng, J.; Dai, Y.; Yang, D. and Xia, Y.*
Angew. Chem. Int. Ed. 2010, 49, 5296-5300. (Highlighted in Nature Materials, 2010, 9, p. 605).
 
16. Seed-mediated synthesis of truncated gold decahedrons with a AuCl/oleylamine complex as precursor
Ma, Y.; Zeng, J.; Li, W.; McKiernan, M.; Xie, Z. and Xia, Y.*
Adv. Mater. 2010, 22, 1930-1934.
 
15. Au@Ag core-shell nanocubes with finely tuned and well-controlled sizes, shell thicknesses, and optical properties
Ma, Y.; Li, W.; Cho, E. C.; Li, Z.; Yu, T.; Zeng, J.; Xie, Z. and Xia, Y.*
ACS Nano 2010, 4, 6725-6734.
 
14. Dramatically enhanced photoresponse of reduced graphene oxide with linker-free anchored CdSe nanoparticles
Lin, Y.; Zhang, K.; Chen, W.; Liu, Y.; Geng, Z.; Zeng, J.; Pan, N.*; Yan, L.; Wang, X.* and Hou, J. G.
ACS Nano 2010, 4, 3033-3038.
 
13. Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe(III) species
Ma, Y.; Li, W.; Zeng, J.; McKiernan, M.; Xie, Z. and Xia, Y.*
J. Mater. Chem. 2010, 20, 3586-3589.
 
12. Dissolving Ag from Au-Ag alloy nanoboxes with H2O2: A method for both tailoring the optical properties and measuring the H2O2 concentration
Zhang, Q.; Cobley, C. M.; Zeng, J.; Wen, L.-P.; Chen, J.* and Xia, Y.*
J. Phys. Chem. C 2010, 114, 6396-6400.
 

Before 2009

11. Synthesis of anatase TiO2 nanocrystals with exposed {001} facets
Dai, Y.; Cobley, C. M.; Zeng, J.; Sun, Y. and Xia, Y.*
Nano Lett. 2009, 9, 2455-2459.
 
10. Synthesis of gold nanostructures with controlled morphologies from the AuCl(oleylamine) complex
Ma, Y.; Zeng, J.; and Xia, Y.*
Acta Phys.-Chim. Sin. 2009, 25, 1026-1032. (invited review article).
 
9. UV-light induced fabrication of CdCl2 nanotubes through CdSe/Te nanocrystals based on dimension and configuration control
Zeng, J.; Liu, C.; Huang, J.; Wang, X.*; Zhang, S.; Li, G. and Hou, J. G.*
Nano Lett. 2008, 8, 1318-1322.
 
8. Enhancement of radiation cytotoxicity in breast cancer cells by localized attachment of gold nanoparticles
Kong, T.; Zeng, J. (equal contribution); Xing, J.*; Yang, X.; Yang, J.; Wang, X.; McQuarrie, S.; McEwan, A.; Chen, J.* and Roa, W.
Small 2008, 4, 1537-1543.
 
7. Mechanisms of unmodified CdSe quantum dot-induced elevation of cytoplasmic calcium levels in primary cultures of rat hippocampal neurons
Tang, M.; Wang, M.; Xing, T.; Zeng, J.; Wang, H. and Ruan, D.*
Biomaterials 2008, 29, 4383-4391.
 
6. Unmodified CdSe quantum dots induce elevation of cytoplasmic calcium levels and impairment of functional properties of sodium channels in rat primary cultured hippocampal neurons
Tang, M.; Xing, T.; Zeng, J.; Wang, H.; Li, C.; Yin, S.; Yan, D.; Deng, H.; Liu, J.; Wang, M.; Chen, J. and Ruan, D.*
Environ. Health Persp. 2008, 116, 915-922.
 
5. Necklace-like noble metal hollow-nanoparticle chains: synthesis and tunable optical properties
Zeng, J.; Huang, J.; Lu, W.; Wang, X.*; Wang, B.; Zhang, S. and Hou, J. G.*
Adv. Mater. 2007, 19, 2172-2176.
 
4. High pressure photoluminescence of CdZnSe quantum dots: alloying effect
Zhao, Z.; Zeng, J. (equal contribution); Ding, Z.*; Wang, X.*, Hou, J. G. and Zhang, Z.
J. Appl. Phys. 2007, 102, 053509.
 
3. Fine tuning photoluminescence properties of CdSe nanoparticles by surface states modulation
Zeng, J.; Lu, W.; Wang, X.*; Wang, B. and Hou, J. G.*
J. Colloid Interf. Sci. 2006, 298, 685-688.
 
2. Synthesis of core/shell nanoparticles of Au/CdSe via Au-Cd bialloy precursor
Lu, W.; Wang, B.*; Zeng, J.; Wang, X.; Zhang, S. and Hou, J. G.*
Langmuir 2005, 21, 3684-3687.
 
1. A novel property of styrene-butadiene-styrene/clay nanocomposites: radiation resistance
Zhang, W.; Zeng, J.; Liu, L. and Fang, Y.*
J. Mater. Chem. 2004, 14, 209-213.